scholarly journals A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat

2006 ◽  
Vol 571 (1) ◽  
pp. 221-230 ◽  
Author(s):  
E. Zambrano ◽  
C. J. Bautista ◽  
M. Deás ◽  
P. M. Martínez-Samayoa ◽  
M. González-Zamorano ◽  
...  
2013 ◽  
Vol 304 (7) ◽  
pp. E677-E685 ◽  
Author(s):  
Melissa A. Burmeister ◽  
Jennifer Ayala ◽  
Daniel J. Drucker ◽  
Julio E. Ayala

Glucagon-like peptide-1 (GLP-1) suppresses food intake via activation of a central (i.e., brain) GLP-1 receptor (GLP-1R). Central AMP-activated protein kinase (AMPK) is a nutrient-sensitive regulator of food intake that is inhibited by anorectic signals. The anorectic effect elicited by hindbrain GLP-1R activation is attenuated by the AMPK stimulator AICAR. This suggests that central GLP-1R activation suppresses food intake via inhibition of central AMPK. The present studies examined the mechanism(s) by which central GLP-1R activation inhibits AMPK. Supporting previous findings, AICAR attenuated the anorectic effect elicited by intracerebroventricular (icv) administration of the GLP-1R agonist exendin-4 (Ex-4). We demonstrate that Ex-4 stimulates glycolysis and suppresses AMPK phosphorylation in a glucose-dependent manner in hypothalamic GT1-7 cells. This suggests that inhibition of AMPK and food intake by Ex-4 requires central glucose metabolism. Supporting this, the glycolytic inhibitor 2-deoxyglucose (2-DG) attenuated the anorectic effect of Ex-4. However, icv glucose did not enhance the suppression of food intake by Ex-4. AICAR had no effect on Ex-4-mediated reduction in locomotor activity. We also tested whether other carbohydrates affect the anorectic response to Ex-4. Intracerebroventricular pretreatment with the sucrose metabolite fructose, an AMPK activator, attenuated the anorectic effect of Ex-4. This potentially explains the increased food intake observed in sucrose-fed mice. In summary, we propose a model whereby activation of the central GLP-1R reduces food intake via glucose metabolism-dependent inhibition of central AMPK. We also suggest that fructose stimulates food intake by impairing central GLP-1R action. This has significant implications given the correlation between sugar consumption and obesity.


1997 ◽  
Vol 272 (6) ◽  
pp. R1809-R1815 ◽  
Author(s):  
R. B. Harris

The objective of this experiment was to confirm whether changes in serum leptin and leptin expression were consistent with it being the "lipostatic" factor implicated by earlier parabiosis studies. Lean (+/?) and obese (ob/ob) female C57B1/6J-ob mice were parabiosed (lean-ob/ob) at 7 wk of age. Controls were ob/ob-ob/ob and lean-lean pairs, and single lean and ob/ob mice. Pairs were maintained for 50 days. In ob/ob members of lean-ob/ob pairs serum insulin was normalized, food intake was suppressed, and body fat was reduced by 14%. Lean partners of ob/ob mice had a reduced rectal temperature and experienced a 37% reduction in body fat. Despite loss of fat, serum leptin and adipose leptin mRNA expression were unchanged in lean partners of ob/ob mice. These results suggest that, in lean-ob/ob parabiotic pairs, the ob/ob mouse responds to leptin originating in the lean parabiont, whereas the lean partner responds to a circulating signal, originating in the ob/ob mouse, that maintains leptin expression at inappropriate levels for the degree of adiposity of the lean animal.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


2021 ◽  
Author(s):  
Wei Xian ◽  
Yao Ting ◽  
Fatou Ndoye FALL ◽  
Liang Xiaofang ◽  
Wang Jie ◽  
...  

Abstract BackgroundBile acids (BAs) have considerable importance in the metabolism of glycolipid and cholesterol. BAs profile in mammals has been widely reported, but lacking in fishes. The purpose of the present study is to clarify BAs profiles of common carp and how exogenous additions of BAs could alleviate hepatopancreas injured of common carp under a high plant protein diet. A 11-week feeding trial was conducted with high plant protein diet (18%) (HP) and high plant protein diet (18%) added 600 mg/kg BAs (HP+BAs) for Common carp, and then the UHPLC-MS/MS technology was used to analyze the BAs in the bile and plasma of two groups. ResultsHP could induce vacuolation of hepatocytes and accumulation of glycogen in Common carp, while these phenotypes were significantly improved in HP+BAs group. In addition, BAs profile of HP group and HP+BAs group were described in detail, for Common carp bile with treatment by exogenous BAs, TCA, CA, T β MCA and T ω MCA were the main components. Furthermore, in HP+BAs group plasma, CDCA, CA, LCA, and GCDCA increased significantly, they could activate TGR5, the activation of hepatopancreas TGR5 might regulate glucose metabolism to relieve hepatopancreas glycogen accumulation. ConclusionsHP could induce glycogen accumulation in common carp hepatopancreas while supplemented BAs to HP could mitigate this symptom. And we determined that the reduction of common carp hepatopancreas glycogen accumulation in the HP+BAs group is importantly related to the change in the endogenous BAs profile after the addition of BAs in HP through an integrated bile acids profile determination by UHPLC-MS/MS . This study has important guiding significance for aquaculture.


2001 ◽  
Vol 204 (11) ◽  
pp. 1947-1956 ◽  
Author(s):  
M. S. Johnson ◽  
S. C. Thomson ◽  
J. R. Speakman

SUMMARYTo determine whether mice were limited in their capacity to absorb energy during late lactation, we attempted to increase the energy burden experienced by a group of female mice during late lactation by mating them at the postpartum oestrus, hence combining the energy demands of pregnancy and lactation. These experimental mice were therefore concurrently pregnant and lactating in their first lactation, and were followed through a normal second lactation. In a control group, females also underwent two lactations but sequentially, with the second mating after the first litter had been weaned. Maternal mass and food intake were measured throughout the first lactation, second pregnancy and second lactation. Maternal resting metabolic rate (RMR) was measured prior to the first mating and then at the peak of both the first and second lactations. Litter size and litter mass were also measured throughout both lactations. In the first lactation, experimental mice had a lower mass-independent RMR (F1,88=5.15, P=0.026) and raised significantly heavier pups (t=2.77, d.f.=32, P=0.0093) than the control mice. Experimental mice delayed implantation at the start of the second pregnancy. The extent of the delay was positively related to litter size during the first lactation (F1,19=4.58, P=0.046) and negatively related to mean pup mass (F1,19=5.78, P=0.027) in the first lactation. In the second lactation, the experimental mice gave birth to more (t=2.75, d.f.=38, P=0.0092) and lighter (t=−5.01, d.f.=38, P<0.0001) pups than did the controls in their second lactation. Maternal asymptotic daily food intake of control mice in the second lactation was significantly higher (t=−4.39, d.f.=37, P=0.0001) than that of the experimental mice and higher than that of controls during their first lactation. Despite the added burden on the experimental females during their first lactation, there was no increase in their food intake, which suggested that they might be limited by their capacity to absorb energy. However, control females appeared to be capable of increasing their asymptotic food intake beyond the supposed limits estimated previously, suggesting that the previously established limit was not a fixed central limitation on food intake. As RMR increased in parallel with the increase in food intake during the second lactation of control mice, the sustained energy intake remained at around 7.0×RMR.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104273 ◽  
Author(s):  
Christopher Faulk ◽  
Amanda Barks ◽  
Brisa N. Sánchez ◽  
Zhenzhen Zhang ◽  
Olivia S. Anderson ◽  
...  

2013 ◽  
Vol 305 (4) ◽  
pp. E507-E518 ◽  
Author(s):  
S. Nausheen ◽  
I. H. Shah ◽  
A. Pezeshki ◽  
D. L. Sigalet ◽  
P. K. Chelikani

Bariatric surgeries are hypothesized to produce weight loss and improve diabetes control by multiple mechanisms including gastric restriction and lower gut stimulation; the relative importance of these mechanisms remains poorly understood. We compared the effects of a typical foregut procedure, sleeve gastrectomy, (SG) with a primarily hindgut surgery, ileal transposition (IT), alone and together (SGIT), or sham manipulations, on food intake, body weight, gut hormones, glucose tolerance, and key markers of glucose homeostasis in peripheral tissues of adult male Sprague-Dawley rats (450–550 g, n = 7–9/group). SG, IT, and SGIT surgeries produced transient reduction in food intake and weight gain; the effects of SG and IT on intake and body weight were nonadditive. SG, IT, and SGIT surgeries resulted in increased tissue expression and plasma concentrations of the lower gut hormones glucagon-like peptide-1 and peptide YY and decreased plasma glucose-dependent insulinotropic peptide, insulin, and leptin concentrations. Despite transient effects on intake and weight gain, the SG, IT, and SGIT surgeries produced a significant improvement in glucose tolerance. In support of glycemic improvements, the protein abundance of key markers of glucose metabolism (e.g., GLUT4, PKA, IRS-1) in muscle and adipose tissue were increased, whereas the expression of key gluconeogenic enzyme in liver (G-6-Pase) were decreased following the surgeries. Therefore, our data suggest that enhanced lower gut stimulation following SG, IT, and SGIT surgeries leads to transient reduction in food intake and weight gain together with enhanced secretion of lower gut hormones and improved glucose clearance by peripheral tissues.


1998 ◽  
Vol 76 (2) ◽  
pp. 237-241 ◽  
Author(s):  
L J Martin ◽  
PJH Jones ◽  
R V Considine ◽  
W Su ◽  
N F Boyd ◽  
...  

To investigate whether circulating leptin levels are associated with energy expenditure in healthy humans, doubly labeled water energy measurements and food intake assessment were carried out in 27 women (mean age, 48.6 years; weight, 61.9 kg; body mass index, 23.2). Energy expenditure was determined over 13 days. Food intake was measured by 7-day food records. Leptin was measured by radioimmunoassay. Leptin level was strongly associated with percentage body fat (r = 0.59; p < 0.001), fat mass (r = 0.60; p < 0.001), and body mass index (r = 0.41; p = 0.03), but no correlation was observed with energy expenditure (r = 0.02; p = 0.93). After controlling for percentage body fat, a positive association of leptin level with energy expenditure of marginal significance (p = 0.06) was observed. There were no significant univariate associations of age, physical activity, lean body mass, height, or dietary variables with leptin level. When controlling for body fat, a significant positive correlation was observed for percent energy from carbohydrate and negative correlations with dietary fat and alcohol intake. These findings confirm previous associations between leptin and body fat content and suggest a relationship between serum leptin and energy expenditure level in healthy humans.Key words: leptin, energy expenditure, body composition, diet.


Sign in / Sign up

Export Citation Format

Share Document