Reverse Flow as a Possible Mechanism for Cavitation Pressure Build-up in a Submerged Journal Bearing

2001 ◽  
Vol 124 (2) ◽  
pp. 320-326 ◽  
Author(s):  
M. Groper ◽  
I. Etsion

An experimentally observed reverse flow phenomenon at the end tip of the cavitation zone of a submerged journal bearing is modeled and theoretically investigated. The shape of the cavity, the nature of the reverse flow and the pressure distribution in the bearing are calculated in an attempt to understand previous experimental observations of pressure build up in the cavitation zone. A comparison with the available experimental results reveals that the cavitation shape, the behavior of the reverse flow and the pressure distribution are fairly well predicted by the present model. The reverse flow mechanism is indeed capable to generate the level of the experimentally measured pressures, particularly towards the end of the cavitation zone.

Author(s):  
Jian Zhou ◽  
Ming Ding ◽  
Haozhi Bian ◽  
Yinxing Zhang ◽  
Zhongning Sun

The parallel compact heat exchangers have been widely applied in the various fields such as heat exchangers in chemical engineering, the solar collector, fuel cells and the passive removal heat exchanger in passive containment cooling system (PCCS), etc. The heat exchangers in the PCCS removes out the heat brought by the steam coming out from the broken reactor or primary cooling system. Therefore, the performance of the passive containment cooling system heat exchanger (PCCS HX) will greatly influence the safety and integrity of the containment. In previous investigations on the parallel compact heat exchangers, attentions are focused on the pressure distribution and flow distribution in the heat exchangers. A bad flow distribution in the heat exchanger will reduce the heat performance. More seriously, the coolant in some tubes may boils and the tubes will be overheated, resulting in explosion of tubes. Therefore, the characteristic of pressure distribution and the flow distribution should be investigated for a uniform flow distribution. In the past studies of the compact heat exchangers, the numbers of tube are almost under 72 which is relatively small, while the number of tubes PCCS HX is usually over than 100. And the pressure distribution in compact heat exchangers is assumed that the pressure recovery plays a leading role. However, the more numbers of tube will bring more flow maldistribution, if the geometry design is selected inappropriately. The reverse flow may occur in the heat exchanger, which means that in some tubes, the coolant flows from the tube outlet to the inlet. This phenomenon of reverse flow have never been mentioned in previous studies. The occurrence of the reverse flow will significantly decrease the performance of the heat exchanger and cause a bad influence on the safety of the containment. In the PCCS, the Z-type heat exchanger is one of the choice of PCCS HX (heat exchanger) design. Therefore, the present study focus on the characteristic of reverse flow phenomenon in Z-type heat exchangers. The pressure distribution and the flow distribution have been separately investigated deeply. The conclusion of this study will provide a guide to the geometry design of the PCCS HX with large number of tubes.


1982 ◽  
Vol 104 (2) ◽  
pp. 157-163 ◽  
Author(s):  
I. Etsion ◽  
L. P. Ludwig

Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests were performed at various shaft speeds and ambient pressure levels. Some photographs of the cavitation region are presented showing strong reverse flow at the downstream end of the region. Pressure profiles are presented showing significant pressure variations inside the cavitation zone, contrary to common assumptions of constant cavitation pressure.


1968 ◽  
Vol 90 (1) ◽  
pp. 243-253 ◽  
Author(s):  
F. K. Orcutt ◽  
C. W. Ng

Calculated data on steady-state and dynamic properties of the plain cylindrical floating-ring bearing with pressurized lubricant supply are given. The data are for a bearing with L/D of 1, and values of the ratio of inner to outer film clearances of 0.7 and 1.3. One value of dimensionless supply pressure parameter is covered. Experimental results are presented which verify the calculated results and which supplement them, particularly with respect to stability characteristics of the bearing.


Author(s):  
M. Bahrami ◽  
M. M. Yovanovich ◽  
J. R. Culham

The contact of rough spheres is of high interest in many tribological, thermal, and electrical fundamental analyses. Implementing the existing models is complex and requires iterative numerical solutions. In this paper a new model is presented and a general pressure distribution is proposed that encompasses the entire range of spherical rough contacts including the Hertzian limit. It is shown that the non-dimensional maximum contact pressure is the key parameter that controls the solution. Compact expressions are proposed for calculating the pressure distribution, radius of the contact area, elastic bulk deformation, and the compliance as functions of the governing non-dimensional parameters. The present model shows the same trends as those of the Greenwood and Tripp model. Correlations proposed for the contact radius and the compliance are compared with experimental data collected by others and good agreement is observed.


2005 ◽  
Vol 128 (2) ◽  
pp. 312-318 ◽  
Author(s):  
Mihai B. Dobrica ◽  
Michel Fillon

Pocket-pads or steps are often used in journal bearing design, allowing improvement of the latter’s dynamic behavior. Similar “discontinuous” geometries are used in designing thrust bearing pads. A literature review shows that, to date, only isoviscous and adiabatic studies of such geometries have been performed. The present paper addresses this gap, proposing a complete thermohydrodynamic (THD) steady model, adapted to three-dimensional (3D) discontinuous geometries. The model is applied to the well-known geometry of a slider pocket bearing, operating with an incompressible viscous lubricant. A model based on the generalized Reynolds equation, with concentrated inertia effects, is used to determine the 2D pressure distribution. On this basis, a 3D field of velocities is constructed which, in turn, allows the resolution of the 3D energy equation. Using a variable-size grid improves the accuracy in the discontinuity region, allowing an evaluation of the magnitude of error induced by Reynolds assumptions. The equations are solved using the finite volume method. This ensures good convergence even when a significant reverse flow is present. Heat evacuation through the pad is taken into account by solving the Laplace equation with convective boundary conditions that are realistic. The runner’s temperature, assumed constant, is determined by imposing a zero value for the global heat flux balance. The constructed model gives the pressure distribution and velocity fields in the fluid, as well as the temperature distribution across the fluid and solid pad. Results show important transversal temperature gradients in the fluid, especially in the areas of minimal film thickness. This further justifies the use of a complete THD model such as the one employed.


Author(s):  
A.S. FETISOV ◽  
V.O. TYURIN

The article presents the classification of magnetorheological devices. The classification of bearings of rotor machines is given. An experimental stand is described that includes a magnetorheological journal bearing. The information–measuring system of the experimental stand is presented. The results of experimental study is presented.


2020 ◽  
Vol 10 (23) ◽  
pp. 8573
Author(s):  
Franco Concli

For decades, journal bearings have been designed based on the half-Sommerfeld equations. The semi-analytical solution of the conservation equations for mass and momentum leads to the pressure distribution along the journal. However, this approach admits negative values for the pressure, phenomenon without experimental evidence. To overcome this, negative values of the pressure are artificially substituted with the vaporization pressure. This hypothesis leads to reasonable results, even if for a deeper understanding of the physics behind the lubrication and the supporting effects, cavitation should be considered and included in the mathematical model. In a previous paper, the author has already shown the capability of computational fluid dynamics to accurately reproduce the experimental evidences including the Kunz cavitation model in the calculations. The computational fluid dynamics (CFD) results were compared in terms of pressure distribution with experimental data coming from different configurations. The CFD model was coupled with an analytical approach in order to calculate the equilibrium position and the trajectory of the journal. Specifically, the approach was used to study a bearing that was designed to operate within tight tolerances and speeds up to almost 30,000 rpm for operation in a gearbox.


1951 ◽  
Vol 18 (1) ◽  
pp. 101-106
Author(s):  
J. T. Bergen ◽  
G. W. Scott

Abstract In the calendering, or rolling, of a plastic material in to sheet form by passing it between parallel rolls, hydrostatic pressure is exerted against the surface of the roll throughout the region of contact with the plastic mass. This pressure has been measured by means of a pressure-sensitive cylinder, inserted in the body of a 10-in-diam roll, together with high-speed oscillographic technique. The materials which were calendered consisted of a resin which exhibited flow properties characteristic of a viscous liquid, and several filled plastic compositions of commercial interest. Pressure maxima ranging up to 8000 psi were observed. Comparison of experimental results with theoretical expressions for pressure distribution, as given by several authors, indicates that the equation derived by Gaskell quite satisfactorily predicts the results for the case of the viscous liquid. The commercial plastics were found to exhibit pressure-distribution characteristics which were perceptibly different from those of the viscous liquid. Certain limitations of Gaskell’s treatment of nonviscous materials prevent its application to these experimental results.


Author(s):  
Adamos Adamou ◽  
Colin Copeland

Abstract Augmented backside cooling refers to the enhancement of the backside convection of a combustor liner using extended heat transfer surfaces to fully utilise the cooling air by maximising the heat transfer to pumping ratio characteristic. Although film cooling has and still is widely used in the gas turbine industry, augmented backside cooling has been in development for decades now. The reason for this, is to reduce the amount of air used for liner cooling and to also reduce the emissions caused by using film cooling in the primary zones. In the case of micro gas turbines, emissions are of even greater importance, since the regulations for such engines will most likely become stricter in the following years due to a global effort to reduce emission. Furthermore, the liners investigated in this paper are for a 10 kWe micro turbine, destine for various potential markets, such as combine heat and power for houses, EV hybrids and even small UAVs. The majority of these markets require long service intervals, which in turn requires the combustor liners to be under the least amount of thermal stress possible. The desire to also increase combustor inlet temperatures with the use of recuperated exhaust gases, which in turn increase the overall system efficiency, limits the cooling effectiveness of the inlet air. Due to all these reasons, an advanced form of augmented backside cooling would be of substantial significance in such a system. Currently some very simple designs are used in the form of straight plain fins, transverse strips or other similar geometries, but the creation of high heat transfer efficiency surfaces in such small sizes becomes very difficult with traditional subtractive manufacturing methods. When using additive manufacturing though these types of surfaces are not an issue. This paper covers the comparison of experimental results with conjugate heat transfer CFD models and empirical heat balance models for two different AM liner cooling geometries and an AM blank liner. The two cooling fin geometries include a rotating plain fin and an offset strip fin. The liners were tested in an AM built reverse flow radial swirl stabilised combustion chamber at a variety of operating conditions. During the experiments the surfaces were compared using a thermal camera to record the outer liner temperature which was viewed through a quartz outer casing. The experimental results showed that the cooling surfaces were effective at reducing the liner temperatures with minimal pressure losses for multiple operating points. Those results were then compared against the conjugate heat transfer CFD models and the empirical calculations used to design the surfaces initially. From this comparison, it was noticed both the CFD and empirical calculations under predicted the wall temperatures. This is thought to be due to inaccuracies in the predicted flame temperatures and the assumed emissivity values used to calibrate the thermal imaging camera. Further uncertainties arise from the assumption of a constant air and hot gas temperature and mass flow along the cooling surfaces and the lack of data for the surface roughness of the parts.


2012 ◽  
Vol 184-185 ◽  
pp. 609-613
Author(s):  
Kai Wu ◽  
Yu Sun ◽  
Bin Bin Peng

First the extruding force model of isotropic powder material passing through the die hole in pelleting process was founded, then the pressure distribution model in the extruding areas was built. Based on the two models, the torque model in pelleting process of rotated roll forming was developed. The experiments were carried out on the special designed pellet mill and the wireless torque testing system was used to analysis the torque datum. It is shown the computing datum is very close to the experimental results. The researches are helpful to the optimal structural design, energy consume reduction and proper use of the pellet mill in practice.


Sign in / Sign up

Export Citation Format

Share Document