A Kinetic Investigation of the Role of Changes in the Composition of Natural Gas in Engine Applications

2002 ◽  
Vol 124 (2) ◽  
pp. 404-411 ◽  
Author(s):  
E. B. Khalil ◽  
G. A. Karim

The influence of variations in the composition of natural gas on the ignition and combustion processes in engines is investigated. Particular attention is given to changes in the relatively small concentrations of high molar mass alkanes that may be present in the fuel. A detailed chemical kinetic scheme for the oxidation of the higher hydrocarbon components of up to n-heptane was used to investigate analytically the combustion reactions of different fuel mixtures under constant volume adiabatic conditions with initial states that are similar to those during the ignition delay of a typical internal combustion engine. These comprehensive simulation calculations require much computing capacity and time that would preclude their incorporation in full simulation models of engine processes. A simplification is introduced based on replacing artificially the small concentrations of any higher hydrocarbons that may be present in the natural gas by a kinetically equivalent amount of propane in the fuel mixture. This is done such that the resulting equivalent fuel has the same ignition delay as the original fuel under constant volume engine T.D.C. conditions. This “propane equivalent” concept was used in full engine simulation models while employing a relatively short scheme of 150 steps for the oxidation of fuel mixtures of propane, ethane, and methane in air.

Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.


Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1∼0.2ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence it will reduce the DING performance by causing a longer ignition delay.


Author(s):  
Homam Nikpey ◽  
Mohsen Assadi ◽  
Peter Breuhaus

Previously published studies have addressed modifications to the engines when operating with biogas, i.e. a low heating value (LHV) fuel. This study focuses on mapping out the possible biogas share in a fuel mixture of biogas and natural gas in micro combined heat and power (CHP) installations without any engine modifications. This contributes to a reduction in CO2 emissions from existing CHP installations and makes it possible to avoid a costly upgrade of biogas to the natural gas quality as well as engine modifications. Moreover, this approach allows the use of natural gas as a “fallback” solution in the case of eventual variations of the biogas composition and or shortage of biogas, providing improved availability. In this study, the performance of a commercial 100kW micro gas turbine (MGT) is experimentally evaluated when fed by varying mixtures of natural gas and biogas. The MGT is equipped with additional instrumentation, and a gas mixing station is used to supply the demanded fuel mixtures from zero biogas to maximum possible level by diluting natural gas with CO2. A typical biogas composition with 0.6 CH4 and 0.4 CO2 (in mole fraction) was used as reference, and corresponding biogas content in the supplied mixtures was computed. The performance changes due to increased biogas share were studied and compared with the purely natural gas fired engine. This paper presents the test rig setup used for the experimental activities and reports results, demonstrating the impact of burning a mixture of biogas and natural gas on the performance of the MGT. Comparing with when only natural gas was fired in the engine, the electrical efficiency was almost unchanged and no significant changes in operating parameters were observed. It was also shown that burning a mixture of natural gas and biogas contributes to a significant reduction in CO2 emissions from the plant.


Author(s):  
Saroj Kumar Jha ◽  
Sundar Rajan Krishnan ◽  
Kalyan Kumar Srinivasan

This paper presents simulated ignition delay (ID) results for diesel ignition in a pilot-ignited partially premixed, low temperature natural gas (NG) combustion engine. Lean premixed low temperature NG combustion was achieved using small pilot diesel sprays (2–3% of total fuel energy) injected over a range of injection timings (BOIs ∼ 20°–60° BTDC). Modeling IDs at advanced BOIs (50°–60° BTDC) presented unique challenges. In this study a single-component droplet evaporation model was used in conjunction with a modified version of the Shell autoignition (SAI) model to obtain ID predictions of pilot diesel over the range of BOIs (20°-60° BTDC). A detailed uncertainty analysis of several model parameters revealed that Aq and Eq, which affect chain initiation reactions, were the most important parameters (among a few others) for predicting IDs at very lean equivalence ratios. The ID model was validated (within ± 10 percent error) against experimentally measured IDs from a single-cylinder engine at 1700 rpm, BMEP = 6 bar, and intake manifold temperature (Tin) of 75°C. For BOIs close to TDC (e.g., 20° BTDC), the contribution of diesel evaporation times (Δθevap) and droplet diameters to predicted IDs were more significant compared to advanced BOIs (e.g., 60° BTDC). Increasing Tin (the most sensitive experimental input variable affecting predicted IDs), led to a reduction in both the physical and chemical components of ID. Hot EGR led to shorter predicted and measured IDs over the range of BOIs, except 20° BTDC. In general, the thermal effects of hot EGR were found to be more pronounced than either dilution or chemical effects for most BOIs. Finally, uncertainty analysis results also indicated that ID predictions were most sensitive to model parameters AP3, Aq, and Af1, and Eq, which affected chain initiation and propagation reactions and also contributed the most to overall uncertainties in IDs.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g., by cofiring. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular, ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation—in decentralized (microgas turbines) or centralized gas turbine units, neat, or cofired with gaseous fuels like natural gas (NG) and biogas—is discussed. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed, for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within computational fluid dynamics (CFD) codes. Therefore, a detailed experimental and modeling study of ethanol cofiring to NG will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel–air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of NG, ethanol, and ethanol cofired to NG.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Ramees K. Rahman ◽  
Samuel Barak ◽  
K.R.V. (Raghu) Manikantachari ◽  
Erik Ninnemann ◽  
Ashvin Hosangadi ◽  
...  

Abstract The direct-fired supercritical carbon dioxide cycles are one of the most promising power generation methods in terms of their efficiency and environmental friendliness. Two important challenges in implementing these cycles are the high pressure (300 bar) and high CO2 dilution (>80%) in the combustor. The design and development of supercritical oxy-combustors for natural gas require accurate reaction kinetic models to predict the combustion outcomes. The presence of a small amount of impurities in natural gas and other feed streams to oxy-combustors makes these predictions even more complex. During oxy-combustion, trace amounts of nitrogen present in the oxidizer is converted to NOx and gets into the combustion chamber along with the recirculated CO2. Similarly, natural gas can contain a trace amount of ammonia and sulfurous impurities that get converted to NOx and SOx and get back into the combustion chamber with recirculated CO2. In this work, a reaction model is developed for predicting the effect of impurities such as NOx and SOx on supercritical methane combustion. The base mechanism used in this work is GRI Mech 3.0. H2S combustion chemistry is obtained from Bongartz et al. while NOx chemistry is from Konnov. The reaction model is then optimized for a pressure range of 30–300 bar using high-pressure shock tube data from the literature. It is then validated with data obtained from the literature for methane combustion, H2S oxidation, and NOx effects on ignition delay. The effect of impurities on CH4 combustion up to 16 atm is validated using NOx-doped methane studies obtained from the literature. In order to validate the model for high-pressure conditions, experiments are conducted at the UCF shock tube facility using natural gas identical mixtures with N2O as an impurity at ∼100 bar. Current results show that there is a significant change in ignition delay with the presence of impurities. A comparison is made with experimental data using the developed model and predictions are found to be in good agreement. The model developed was used to study the effect of impurities on CO formation from sCO2 combustors. It was found that NOx helps in reducing CO formation while the presence of H2S results in the formation of more CO. The reaction mechanism developed herein can also be used as a base mechanism to develop reduced mechanisms for use in CFD simulations.


Author(s):  
Sundar Rajan Krishnan ◽  
Kalyan Kumar Srinivasan ◽  
Kenneth Clark Midkiff

In previous research conducted by the authors, the Advanced Low Pilot-Ignited Natural Gas (ALPING) combustion employing early injection of small (pilot) diesel sprays to ignite premixed natural gas-air mixtures was demonstrated to yield very low oxides of nitrogen (NOx) emissions and fuel conversion efficiencies comparable to conventional diesel and dual fuel engines. In addition, it was observed that ignition of the diesel-air mixture in ALPING combustion had a profound influence on the ensuing natural gas combustion, engine performance and emissions. This paper discusses experimental and predicted ignition behavior for ALPING combustion in a single-cylinder engine at a medium load (BMEP = 6 bar), engine speed of 1700 rpm, and intake manifold temperature (Tin) of 75°C. Two ignition models were used to simulate diesel ignition under ALPING conditions: (a) Arrhenius-type ignition models, and (b) the Shell autoignition model. To the authors’ knowledge, the Shell model has previously not been implemented in a multi-zone phenomenological combustion simulation to simulate diesel ignition. The effects of pilot injection timing and Tin on ignition processes were analyzed from measured and predicted ignition delay trends. Experimental ignition delays showed a nonlinear trend (increasing from 11 to 51.5 degrees) in the 20°–60° BTDC injection timing range. Arrhenius-type ignition models were found to be inadequate and only yielded linear trends over the injection timing range. Even the inclusion of an equivalence ratio term in Arrhenius-type models did not render them satisfactory for the purpose of modeling ALPING ignition. The Shell model, on the other hand, predicted ignition better over the entire range of injection timings compared to the Arrhenius-type ignition delay models and also captured ignition delay trends at Tin = 95°C and Tin = 105°C. Parametric studies of the Shell model showed that the parameter Ap3, which affects chain propagation reactions, was important under medium load ALPING conditions. With all other model parameters remaining at their original values and only Ap3 modified to 8 × 1011 (from its original value of 1 × 1013), the Shell model predictions closely matched experimental ignition delay trends at different injection timings and Tin.


2019 ◽  
Vol 16 (1) ◽  
pp. 36-42
Author(s):  
Hernando Alexander Yepes-Tumay ◽  
Arley Cardona-Vargas

The effect of ethane on combustion and natural gas autoignition was studied in the present paper. Two fuel mixture of natural gas with high ethane content were considered, 75% CH4 – 25% C2H6 (mixture 1), and 50% CH4 – 50% C2H6 (mixture 2). Natural gas combustion incidence was analyzed through the calculation of energy properties and the ignition delay time numerical calculations along with an ignition mode analysis. Specifically, the strong ignition limit was calculated to determine the effect of ethane on natural gas autoignition. According to the results, ignition delay time decreases for both mixtures in comparison with pure methane. The strong ignition limit shifts to lower temperatures when ethane is present in natural gas chemical composition.  


Sign in / Sign up

Export Citation Format

Share Document