Substructure Analysis of a Flexible System Contact-Impact Event

2004 ◽  
Vol 126 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Anping Guo ◽  
Steve Batzer

In this paper, the application of the substructure methodology to contact-impact analysis of flexible multibody systems is validated. Various impact model parameters that affect the model’s accuracy are presented. A contact-impact system is used that consists of a flexible cantilever bar longitudinally struck at its free end by a rigid body moving at a finite velocity. First, a dynamic model using the substructure method is established. Second, the initial conditions of the system’s dynamic responses during contact-impact are derived. Finally, a numeric contact-impact simulation is performed. The excellent agreement between the numeric solutions to both the substructure model and the analytical solutions demonstrates that the substructure model can successfully describe stress wave propagation within flexible bodies during contact-impact. The method can also clearly display the contact force time history and deformation distribution along the bar during contact-impact time and correctly predict the displacement of the contact surface of the flexible bar and the contact duration of the two bodies. It is shown that a larger substructure number will improve the accuracy of the numerical solutions, but an excessive number will lower the model’s accuracy since increasingly fine substructures increase the number of modal coordinates and lead to more serious computational round off errors and longer computational time.

Author(s):  
Tao Peng ◽  
Teik C. Lim ◽  
Junyi Yang

Geometric eccentricity here refers to the radial deviation (radial runout) of pinion or gear geometric center off its rotational center or axis. Such a typical manufacturing or assembly error in gear transmission exhibits inherent effects on the gear dynamic responses. Modeling of eccentricity has rarely been done for high speed right-angle gears such as hypoid or spiral bevel gears. In this paper, two modeling methods are proposed to quantitatively represent the eccentricity in the hypoid/bevel gear dynamic analysis. The first method is based on the loaded tooth contact analysis (LTCA) for a long shaft period. The LTCA results are then used to synthesize the corresponding roll angle dependent varying mesh model parameters. A second simpler method using translational kinematic transmission error (TE) modification is proposed to reduce the computational time. The effects of eccentricity on the gear dynamic responses are then investigated. The eccentricity excited low frequency shaft order dynamics is found to affect not only the overall level of vibration but also the high frequency mesh order responses. The sideband responses are simulated and characterized. This study is expected to improve the right-angle gearing system dynamic analytical capability and assist in guiding the manufacturing or assembly error tolerance specification.


2016 ◽  
Vol 145 (1) ◽  
pp. 75-96 ◽  
Author(s):  
Mireia Udina ◽  
Maria Rosa Soler ◽  
Ona Sol

Abstract A trapped lee-wave mountain event in the southern part of the Pyrénées area is analyzed using the Weather Research and Forecasting (WRF) Model. Model experiments are designed to address the WRF predictability of such an event and to explore the influence of the model parameters in resolving the mountain waves. The results show that the model is able to capture a trapped lee-wave event using the 1-km horizontal grid model outputs. Different initial conditions, the vertical grid resolution, and the resolved topography lead to changes in the wave field distribution and the wave amplitude meaning that an ensemble of different model settings may be able to quantify the uncertainty of the numerical solutions. However, the model experiments do not significantly change the wavelength of the generated mountain waves, which is shorter in the three-dimensional real simulations than the one derived from satellite imagery. Comparison with observational data from the surface stations and a wind profiler upstream of the mountain range shows that the model underestimates the horizontal wind speed and this can be the reason for the underestimation of the wavelength. In addition, the valley circulations and the formation of a rotor near the surface are explored. The formation of a low-level rotor in the model is intermittent and brief, and it interacts with other flows coming from multiple directions. The first strong wave updraft is located over the valley aligned with the highest mountain peaks and strong vorticity is captured from the surface up to the first wave crest.


2012 ◽  
Vol 80 (1) ◽  
Author(s):  
Wooseok Ji ◽  
Anthony M. Waas

The time-dependent progressive evolution of transverse displacements of an axially impacted, slender, geometrically imperfect, column is studied here. The analysis is concerned with evaluating the time-history associated with the evolution of the buckling response as a function of the initial geometric imperfection amplitude. The exact solution of the axial stress wave propagation is employed to study the physics of the buckling response with the nonuniform axial strain distribution varying in time and space. The responses of axially impacted columns are examined in light of past experimental results and associated numerical solutions. Results in the present paper are limited to elastic column behavior.


Author(s):  
Mona Abdeltawab Gomaa ◽  
Tamer HMA Kasem ◽  
Andreas Schlenkhoff

Submerged breakwaters are efficient structures used for shore protection. Many design features of these structures are captured upon modeling wave propagation over submerged square obstacles. The presence of separation vortices and large free surface deformations complicates the problem. A multiphase turbulent numerical model is developed using ANSYS commercial package. Careful domain discretization is done employing suitable mesh clustering to capture high gradients. Various numerical model parameters are provided, including grid size and time step. Special attention is directed towards clarifying turbulence initial conditions. Stable simulation results are obtained within acceptable computational time. Numerical results are validated quantitatively using subsurface measurements. Comparison along continuous horizontal and vertical velocity profiles is provided. Temporal and spatial model resolutions are illustrated for three test cases. The effect of wave period and height is well focused. The unsteady vortical structure is visualized. The incident wave energy is calculated and validated against theoretical values. The wave energy dissipation characteristics are briefly explained.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


2021 ◽  
Vol 2 (3) ◽  
pp. 431-441
Author(s):  
Odysseas Kosmas

In previous works we developed a methodology of deriving variational integrators to provide numerical solutions of systems having oscillatory behavior. These schemes use exponential functions to approximate the intermediate configurations and velocities, which are then placed into the discrete Lagrangian function characterizing the physical system. We afterwards proved that, higher order schemes can be obtained through the corresponding discrete Euler–Lagrange equations and the definition of a weighted sum of “continuous intermediate Lagrangians” each of them evaluated at an intermediate time node. In the present article, we extend these methods so as to include Lagrangians of split potential systems, namely, to address cases when the potential function can be decomposed into several components. Rather than using many intermediate points for the complete Lagrangian, in this work we introduce different numbers of intermediate points, resulting within the context of various reliable quadrature rules, for the various potentials. Finally, we assess the accuracy, convergence and computational time of the proposed technique by testing and comparing them with well known standards.


2007 ◽  
Vol 345-346 ◽  
pp. 845-848
Author(s):  
Joo Yong Cho ◽  
Han Suk Go ◽  
Usik Lee

In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the dynamic analysis of spectral element models subjected to the non-zero initial conditions. To evaluate the proposed SAM, the spectral element model for the simply supported Bernoulli-Euler beam is considered as an example problem. The accuracy of the proposed SAM is evaluated by comparing the dynamic responses obtained by SAM with the exact analytical solutions.


2021 ◽  
Vol 13 (5) ◽  
pp. 771-780
Author(s):  
Shou-Kai Chen ◽  
Bo-Wen Xu

The adiabatic temperature rise model of mass concrete is very important for temperature field simulation, same to crack resistance capacity and temperature control of concrete structures. In this research, a thermal kinetics analysis was performed to study the exothermic hydration reaction process of concrete, and an adiabatic temperature rise model was proposed. The proposed model considers influencing factors, including initial temperature, temperature history, activation energy, and the completion degree of adiabatic temperature rise and is theoretically mature and definitive in physical meaning. It was performed on different initial temperatures for adiabatic temperature rise test; the data were employed in a regression analysis of the model parameters and initial conditions. The same function was applied to describe the dynamic change of the adiabatic temperature rise rates for different initial temperatures and different temperature changing processes and subsequently employed in a finite element analysis of the concrete temperature field. The test results indicated that the proposed model adequately fits the data of the adiabatic temperature rise test, which included different initial temperatures, and accurately predicts the changing pattern of adiabatic temperature rise of concrete at different initial temperatures. Compared with the results using the traditional age-based adiabatic temperature rise model, the results of a calculation example revealed that the simulated calculation results using the proposed model can accurately reflect the temperature change pattern of concrete in heat dissipation conditions.


2021 ◽  
Author(s):  
Mikhail Sviridov ◽  
◽  
Anton Mosin ◽  
Sergey Lebedev ◽  
Ron Thompson ◽  
...  

While proactive geosteering, special inversion algorithms are used to process the readings of logging-while-drilling resistivity tools in real-time and provide oil field operators with formation models to make informed steering decisions. Currently, there is no industry standard for inversion deliverables and corresponding quality indicators because major tool vendors develop their own device-specific algorithms and use them internally. This paper presents the first implementation of vendor-neutral inversion approach applicable for any induction resistivity tool and enabling operators to standardize the efficiency of various geosteering services. The necessity of such universal inversion approach was inspired by the activity of LWD Deep Azimuthal Resistivity Services Standardization Workgroup initiated by SPWLA Resistivity Special Interest Group in 2016. Proposed inversion algorithm utilizes a 1D layer-cake formation model and is performed interval-by-interval. The following model parameters can be determined: horizontal and vertical resistivities of each layer, positions of layer boundaries, and formation dip. The inversion can support arbitrary deep azimuthal induction resistivity tool with coaxial, tilted, or orthogonal transmitting and receiving antennas. The inversion is purely data-driven; it works in automatic mode and provides fully unbiased results obtained from tool readings only. The algorithm is based on statistical reversible-jump Markov chain Monte Carlo method that does not require any predefined assumptions about the formation structure and enables searching of models explaining the data even if the number of layers in the model is unknown. To globalize search, the algorithm runs several Markov chains capable of exchanging their states between one another to move from the vicinity of local minimum to more perspective domain of model parameter space. While execution, the inversion keeps all models it is dealing with to estimate the resolution accuracy of formation parameters and generate several quality indicators. Eventually, these indicators are delivered together with recovered resistivity models to help operators with the evaluation of inversion results reliability. To ensure high performance of the inversion, a fast and accurate semi-analytical forward solver is employed to compute required responses of a tool with specific geometry and their derivatives with respect to any parameter of multi-layered model. Moreover, the reliance on the simultaneous evolution of multiple Markov chains makes the algorithm suitable for parallel execution that significantly decreases the computational time. Application of the proposed inversion is shown on a series of synthetic examples and field case studies such as navigating the well along the reservoir roof or near the oil-water-contact in oil sands. Inversion results for all scenarios confirm that the proposed algorithm can successfully evaluate formation model complexity, recover model parameters, and quantify their uncertainty within a reasonable computational time. Presented vendor-neutral stochastic approach to data processing leads to the standardization of the inversion output including the resistivity model and its quality indicators that helps operators to better understand capabilities of tools from different vendors and eventually make more confident geosteering decisions.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Sofia Sarraf ◽  
Ezequiel López ◽  
Laura Battaglia ◽  
Gustavo Ríos Rodríguez ◽  
Jorge D'Elía

In the boundary element method (BEM), the Galerkin weighting technique allows to obtain numerical solutions of a boundary integral equation (BIE), giving the Galerkin boundary element method (GBEM). In three-dimensional (3D) spatial domains, the nested double surface integration of GBEM leads to a significantly larger computational time for assembling the linear system than with the standard collocation method. In practice, the computational time is roughly an order of magnitude larger, thus limiting the use of GBEM in 3D engineering problems. The standard approach for reducing the computational time of the linear system assembling is to skip integrations whenever possible. In this work, a modified assembling algorithm for the element matrices in GBEM is proposed for solving integral kernels that depend on the exterior unit normal. This algorithm is based on kernels symmetries at the element level and not on the flow nor in the mesh. It is applied to a BIE that models external creeping flows around 3D closed bodies using second-order kernels, and it is implemented using OpenMP. For these BIEs, the modified algorithm is on average 32% faster than the original one.


Sign in / Sign up

Export Citation Format

Share Document