Warpage Analysis of Underfilled Wafers

2004 ◽  
Vol 126 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Hai Ding ◽  
I. Charles Ume ◽  
Cheng Zhang

Wafer-level packaging (WLP) is one of the future trends in electronic packaging. Since 1994, many companies have released various WLP licenses. One of the common concerns of WLP is wafer warpage. Warpage of wafers tends to introduce cracking or delamination during dicing and low temperature storage processes. After wafer dicing, warpage could affect the quality of the dies and shorten the life of each packaged product. Many documented works indicated that in the design and implementation of multilayer structured electronic packaging products, some key parameters must be carefully considered and closely controlled to ensure the best packaging quality with the minimum warpage. During the wafer-level flip chip assembly process, the application of underfill on the whole wafer is a critical step. In this step, the key underfill parameters that affect wafer warpage are Young’s modulus, thickness, and coefficient of thermal expansion (CTE). In this paper, an experimental design and statistical methods were used to identify the model structure and parameters that are critical to the warpage of wafers. Bilinear regression models were identified based on the data obtained from finite element analysis (FEA) that was verified by shadow moire´ experiments. In FEA, the underfilled wafer structure is simplified to consisting of two layers of linear elastic materials. According to the models, the CTE, the coupling of Young’s modulus and CTE, and the coupling of thickness and CTE primarily determine wafer warpage. Further FEA and shadow moire´ experiments indicate that the models are capable of predicting wafer warpage in the WLP processes.

2001 ◽  
Author(s):  
Hai Ding ◽  
I. Charles Ume ◽  
Cheng Zhang

Abstract Wafer-level packaging (WLP) is one of the trends of electronic packaging in the 21st century. Since 1994, many companies have released WLP licenses. One of the common concerns among these various approaches is wafer warpage. Warpage of wafer tends to introduces crack or delamination during dicing and low temperature storage process. After wafer dicing, warpage could reduce the quality of each package in the long run. Many documented works indicated that in the design and implementation of WLP, some key parameters have to be carefully considered and closely controlled to ensure higher packaging quality with the minimum warpage. For the case of wafer-level flip chip, the key parameters are Young’s modulus, thickness, and coefficient of thermal expansion (CTE) of underfill. In this research, an experimental design and statistical methods have been used to identify the model structure and parameters that are critical to the warpage of wafers. Regression models were identified based on the data obtained from finite element analysis (FEA) that is verified by shadow Moiré experiments. According to the models, the CTE, the coupling of Young’s modulus and CTE, and the coupling of thickness and CTE of underfill primarily determine wafer warpage. Further FEA and shadow Moiré experiments indicate that the models are capable of predicting of wafer warpage in the process of WLP.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000307-000312
Author(s):  
YingHsuan Chou ◽  
Daichi Okamoto ◽  
Hidekazu Miyabe

Abstract In this paper, we reveal the development of a novel two-layer Solder Resist (SR) film with low young’s modulus which consists of low young’s modulus layer that possesses excellent adhesion to substrate and thermal resistance layer which is composed of resins with high thermal resistance and great toughness. This novel two-layer SR film exhibits superior resolution and crack resistance. Furthermore, the amount of warpage is extremely low. In general, the material with low young’s modulus and high elongation is caused from weak cross-link density, resulting in poor thermal resistance and delamination which occurs when mounting at high temperature. Herein, we can inhibit delamination successfully by this new two-layer structure film with superior thermal resistance. The Coefficient of Thermal Expansion (CTE) of conventional SR for FC-BGA is 35 ppm, and modulus is 4.5 GPa, whereas, this advanced two-layer SR film exhibits CTE of 66 ppm, and modulus of 2.3 GPa. In order to compare the crack resistance between conventional SR and newly developed two-layer SR film, the film was laminated on BGA substrate (substrate size is 50 mm × 50 mm), patterned by photolithography and cured, and then, 25 mm × 25 mm chip was mounted on a BGA substrate by flip-chip bonder. Conducting thermal cycle test (TCT) and observing the number of cracks after 1000 cycles of TCT. The crack occurrence frequency of the conventional SR is 65 %, whereas that of the new two-layer SR film is 4 %. We proved clearly that high CTE and low young’s modulus demonstrate overwhelmingly high crack resistance. Besides, high resolution of this newly developed two-layer film enabled the formation of SR opening (SRO) as small as 40 μm. From the above results, the newly developed two-layer SR film with low young’s modulus is beneficial for the next generation high-density package, especially for the outermost layer of FC-BGA packages and interposers that require higher reliability.


2018 ◽  
Vol 202 ◽  
pp. 01004
Author(s):  
D. Sujan ◽  
L. Vincent ◽  
Y. W. Pok

Thermo-mechanical mismatch stress is one of the reasons for mechanical as well as functional failure between two or more connected devices. In electronic packaging, two or more plates or layers are bonded together by an extremely thin layer. This thin bonding layer works as an interfacial stress compliance which is expected to alleviate the interfacial stresses between the layers. Therefore, it is very important to identify the suitable interfacial bonding characteristics for reducing the interfacial thermal mismatch stresses to maintain the structural integrity. This research work examines the influences of bond layer properties and geometry on the interfacial shearing and peeling stresses in a bi-material assembly. In this study a closed form model of bi-layered assembly is used with the up-to-date bond layer shear stress compliance expression. The key bond layer properties namely Young’s modulus, coefficient of thermal expansion, Poisson’s ratio, and physical parameters like temperature and thickness are considered for interfacial stress evaluation. It is observed that the Young’s modulus, the thickness and the temperature of the bond layer have significant influence on the interfacial shearing and peeling stress. The results obtained are likely to be useful in designing bond layer properties in microelectronics and photonics applications.


2016 ◽  
Vol 33 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Y.-F. Su ◽  
K.-N. Chiang ◽  
Steven Y. Liang

AbstractPresently, physical limitations are restricting the development of the microelectronic industry driven by Moore's law. To achieve high-performance, small form factor, and lightweight applications, new electronic packaging methods have exceeded Moore's law. This research proposes a double-chip stacking structure in an embedded fan-out wafer-level packaging with double-sided interconnections. The overall reliability of the solder joints and redistributed lines is assessed through finite element analysis. The application of soft lamination material and selection of a carrier material whose coefficient of thermal expansion (CTE) is close to that of the printed circuit board can effectively enhance the reliability of solder joints over more than 1,000 cycles. A trace/pad junction whose direction is parallel to the major direction of the CTE mismatch is recommended, and the curved portion of trace lines can absorb the expansion of metal lines and filler material. Design-on-simulation methodology is necessary to develop novel packaging structures in the electronic packaging industry.


Author(s):  
Jonathan B. Hopkins ◽  
Lucas A. Shaw ◽  
Todd H. Weisgraber ◽  
George R. Farquar ◽  
Christopher D. Harvey ◽  
...  

The aim of this paper is to introduce an approach for optimally organizing a variety of different unit cell designs within a large lattice such that the bulk behavior of the lattice exhibits a desired Young’s modulus with a graded change in thermal expansion over its geometry. This lattice, called a graded microarchitectured material, can be sandwiched between two other materials with different thermal expansion coefficients to accommodate their different expansions or contractions caused by changing temperature while achieving a desired uniform stiffness. First, this paper provides the theory necessary to calculate the thermal expansion and Young’s modulus of large multi-material lattices that consist of periodic (i.e., repeating) unit cells of the same design. Then it introduces the theory for calculating the graded thermal expansions of a large multimaterial lattice that consists of non-periodic unit cells of different designs. An approach is then provided for optimally designing and organizing different unit cells within a lattice such that both of its ends achieve the same thermal expansion as the two materials between which the lattice is sandwiched. A MATLAB tool is used to generate images of the undeformed and deformed lattices to verify their behavior and various examples are provided as case studies. The theory provided is also verified and validated using finite element analysis and experimentation.


Author(s):  
Alexander E. Stott ◽  
Constantinos Charalambous ◽  
Tristram J. Warren ◽  
William T. Pike ◽  
Robert Myhill ◽  
...  

ABSTRACT The National Aeronautics and Space Administration InSight mission has deployed the seismic experiment, SEIS, on the surface of Mars, and has recorded a variety of signals including marsquakes and dust devils. This work presents results on the tilt and local noise sources, which provide context to aid interpretation of the observed signals and allow an examination of the near-surface properties. Our analysis uses data recorded by the short-period sensors on the deck, throughout deployment and in the final configuration. We use thermal decorrelation to provide an estimate of the sol-to-sol tilt. This tilt is examined across deployment and over a Martian year. After each modification to the site, the tilt is seen to stabilize over 3–20 sols depending on the action, and the total change in tilt is <0.035°. Long-term tilt over a Martian year is limited to <0.007°. We also investigate the attenuation of lander-induced vibrations between the lander and SEIS. Robotic arm motions provide a known lander source in the 5–9 Hz bandwidth, yielding an amplitude attenuation of lander signals between 100 and 1000 times. The attenuation of wind sensitivity from the deck to ground presents a similar value in the 1.5–9 Hz range, thus favoring a noise dominated by lander vibrations induced by the wind. Wind sensitivities outside this bandwidth exhibit different sensitivity changes, indicating a change in the coupling. The results are interpreted through a finite-element analysis of the regolith with a depth-dependent Young’s modulus. We argue that discrepancies between this model and the observations are due to local compaction beneath the lander legs and/or anelasticity. An estimate for the effective Young’s modulus is obtained as 62–81 MPa, corroborating previous estimates for the top layer duricrust.


Sign in / Sign up

Export Citation Format

Share Document