Comparison of Rotordynamic Analysis Predictions With the Test Response of Simple Gas Hybrid Bearings for Oil Free Turbomachinery

2006 ◽  
Vol 128 (3) ◽  
pp. 634-643 ◽  
Author(s):  
Deborah A. Osborne ◽  
Luis San Andre´s

Current applications of gas film bearings in high-speed oil-free microturbomachinery (<0.4 MW) require calibrated predictive tools to successfully deploy their application to mass-produced systems, for example, oil-free turbochargers. The present investigation details the linear rotordynamic analysis of a test rotor supported on externally pressurized gas bearings. Model predictions are compared with the test rotordynamic response determined through comprehensive experiments conducted on a small rotor supported on three lobed hybrid (hydrostatic/hydrodynamic) rigid gas bearings. Predictions for the rotor-bearing system synchronous response to imbalance show good agreement with measurements during rotor coastdowns, and manifest a decrease in damping ratio as the level of external pressurization increases. The rotor-bearing eigenvalue analysis forwards natural frequencies in accordance with the measurements, and null damping ratios evidence the threshold speeds of rotordynamic instability. Estimated whirl frequency ratios are typically 50% of rotor speed, thus predicting subsynchronous instabilities at lower rotor speeds than found experimentally when increasing the magnitude of feed pressurization. Rationale asserting the nature of the discrepancies calls for further analysis.

Author(s):  
Deborah A. Wilde ◽  
Luis San Andre´s

Current applications of gas film bearings in high-speed oil-free micro-turbomachinery (&lt;0.4 MW) require calibrated predictive tools to successfully deploy their application to mass-produced systems, for example oil-free turbochargers. The present investigation details the linear rotordynamic analysis of a test rotor supported on externally pressurized gas bearings. Model predictions are compared with the test rotordynamic response determined through comprehensive experiments conducted on a small rotor supported on three lobed hybrid (hydrostatic/hydrodynamic) rigid gas bearings. Predictions for the rotor-bearing system synchronous response to imbalance show good agreement with measurements during rotor coast downs, and manifest a decrease in damping ratio as the level of external pressurization increases. The rotor-bearing eigenvalue analysis forwards natural frequencies in accordance with the measurements, and null damping ratios evidence the threshold speeds of rotordynamic instability. Estimated whirl frequency ratios are typically 50% of rotor speed, thus predicting sub synchronous instabilities at lower rotor speeds than found experimentally when increasing the magnitude of feed pressurization. Rationale asserting the nature of the discrepancies calls for further analysis.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


2007 ◽  
Vol 129 (4) ◽  
pp. 1020-1027 ◽  
Author(s):  
Xuehua Zhu ◽  
Luis San Andrés

Micro-turbomachinery demands gas bearings to ensure compactness, light weight, and extreme temperature operation. Gas bearings with large stiffness and damping, and preferably of low cost, will enable successful commercial applications. Presently, tests conducted on a small rotor supported on flexure pivot hydrostatic pad gas bearings (FPTPBs) demonstrate stable rotordynamic responses up to 100,000rpm (limit of the drive motor). Test rotor responses show the feed pressure raises the system critical speed (increase in bearing direct stiffness) while the viscous damping ratio decreases. Predictions correlate favorably with experimentally identified (synchronous) direct stiffness bearing force coefficients. Identified experimental gas bearing synchronous damping coefficients are 50% or less of the predicted magnitudes, though remaining relatively constant as the rotor speed increases. Tests without feed pressure show the rotor becomes unstable at ∼81krpm with a whirl frequency ratio of 20%. FPTPBs are mechanically complex and more expensive than cylindrical plain bearings. However, their enhanced stability characteristics and predictable rotordynamic performance makes them desirable for the envisioned oil-free applications in high speed micro-turbomachinery.


1978 ◽  
Vol 22 (03) ◽  
pp. 140-169
Author(s):  
Milton Martin

A theoretical method is derived for predicting the linearized response characteristics of constant deadrise high-speed planing boats in head and following waves. Comparisons of the theoretical predictions of the pitch and heave response amplitude operators and phase angles with existing experimental data show reasonably good agreement for a wide variety of conditions of interest. It appears that nonlinear effects are more severe at a speed to length ratio of 6 than of, say, 4 or less, principally because of the reduction of the damping ratio of the boat with increasing speed, and the consequent increase in motions in the vicinity of the resonant encounter frequency. However, it is concluded that the linear theory can provide a simple and fast means of determining the effect of various parameters such as trim angle, deadrise, loading, and speed on the damping, natural frequency, and linearized response in waves, and that this can furnish valuable insight into the actual boat dynamics, even though the accurate predictions of large motions and peak accelerations would require a nonlinear analysis.


2016 ◽  
Vol 60 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Kai Feng ◽  
Wanhui Liu ◽  
Xueyuan Zhao ◽  
Wenjun Li

Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The vibration response of a rotor bearing system is extremely important in industries and is challenged by their highly non-linear and complex properties. This paper focuses on performance prediction using response surface method (RSM), which is essential to the design of high performance rotor bearing system. Response surface method is utilized to analysis the effects of design and operating parameters on the vibration response of a rotor-bearing system. A test rig of high speed rotor supported on rolling bearings is used. Vibration response of the healthy ball bearing and ball bearings with various faults are obtained and analyzed. Distributed defects are considered as surface waviness of the bearing components. Effects of internal radial clearance and surface waviness of the bearing components and their interaction are analyzed using design of experiment (DOE) and RSM.


Author(s):  
Thimothy Harold Gonsalves ◽  
Mohan Kumar Garje Channabasappa ◽  
Ramesh Motagondanahalli Rangarasaiah

Author(s):  
Crystal A. Heshmat ◽  
Hooshang Heshmat ◽  
Mark J. Valco ◽  
Kevin C. Radil ◽  
Christopher Della Corte

This paper describes an oil-free, 150 Hp turbocharger that was successfully operated with compliant foil bearings in a range of pitch and roll angles, including vertical operation, thereby demonstrating its viability for aircraft applications. On a gas test stand the turbocharger was operated to 120,000 rpm, under extreme conditions. In addition, the compliant foil bearing-supported turbocharger successfully tolerated shock and vibration of 40 g. Advanced technologies have been applied to the second generation of this turbocharger, shown in Figure 1, including self acting, compliant foil hydrodynamic air bearings with advanced coatings capable, of operation above 815 °C (1500°F). Journal foil bearings with maximum load capacity up to 670 kPa (97 psi) were used in conjunction with thrust foil bearings capable of maximum loads to 570 kPa (83 psi). Bearing component development tests demonstrated 30,000 start stop cycles at 815 °C (1500°F) with a newly developed, solid lubricant coating, KOROLON™. KOROLON™ exhibits a coefficient of friction of less than 0.1 at a wide range of temperatures. Current-designed foil bearings with KOROLON™ have immensely decreased turbolag, allowing acceleration from rest to over 100,000 rpm in less than 2 seconds. Advanced bearing stiffness maintained rotor total axial end-to-end motion within 100 microns (0.004 inch). Total radial static and dynamic motion was controlled within 25 microns (0.001 inch). Development of this high speed turbomachine included bearing and solid lubricant component development tests, rotor-bearing dynamic simulator qualification and gas stand tests of the assembled turbocharger. Gas stand and simulator test results revealed stable bearing temperatures, low rotor vibrations, good shock tolerance and the ability of the rotor bearing system to sustain overspeed conditions beyond 120,000 rpm. This combination of component and integrated rotor-bearing system technology addresses many of the issues associated with application of compliant foil bearings to industrial compressors, blowers, and gas turbine engines, overcoming many of the inherently show-stopping and debilitating features of rolling element bearings, i.e., speed and temperature limitations.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
R. G. Desavale ◽  
R. Venkatachalam ◽  
S. P. Chavan

Many industries make wide use of rotor bearing systems such as high speed turbines and generators. However, the vibration of antifriction rotor–bearings is a key factor in reducing the life of the bearings; thus significantly influencing the performance and working life of the whole power plant. In earlier research on the vibration characteristics of high speed rotor–bearing systems, such as in induced draft (ID) fans, an application used in sugar cane factories, the supporting antifriction bearings were simplified as a particle on a shaft with radial stiffness and damping coefficient. However, such simplification neglects the effects of the bearing structure on the vibration performance of the rotor–bearing system. This paper demonstrates the benefits of a more holistic approach and establishes a numerical model of the stiffness of the spherical roller bearing through Buckingham's π theorem (BPT). On the basis of this model, we argue for the benefits of a new dimensional analysis (DA) technique for rotor–bearing systems. Our new DA also considers the influences of the bearing structure parameters on the vibration of rotor–bearing systems. We demonstrate the effectiveness of our approach by conducting a comparative BPT study using an ID fan, a rotor–bearing system in use in sugar cane factories. We first analyzed an ID fan using the simplified model to obtain the defect frequencies and vibration amplitude responses of the ID fan system. Subsequently the same ID fan rotor was also analyzed using our new multivariable regression analysis (MVRA) approach to verify the validity of our new and holistic BPT. The results indicate that the new method we propose in this paper for the calculation of vibration characteristics of a high speed rotor–bearing (ID fan) is credible and will save time and costs by the accurate detection of imminent bearing failure.


Sign in / Sign up

Export Citation Format

Share Document