Elastic Deformation of Mineralized Collagen Fibrils: An Equivalent Inclusion Based Composite Model

2005 ◽  
Vol 127 (3) ◽  
pp. 383-390 ◽  
Author(s):  
Ozan Akkus

Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers’ mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson’s ratios decreased with the exception of ν12(=ν21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.

2010 ◽  
Vol 8 (57) ◽  
pp. 500-505 ◽  
Author(s):  
Fei Hang ◽  
Asa H. Barber

Mineralized collagen fibrils (MCFs) are distinct building blocks for bone material and perform an important mechanical function. A novel experimental technique using combined atomic force microscopy and scanning electron microscopy is used to manipulate and measure the mechanical properties of individual MCFs from antler, which is a representative bone tissue. The recorded stress–strain response of individual MCFs under tension shows an initial linear deformation region for all fibrils, followed by inhomogeneous deformation above a critical strain. This inhomogeneous deformation is indicative of fibrils exhibiting either yield or strain hardening and suggests possible mineral compositional changes within each fibril. A phenomenological model is used to describe the fibril nano-mechanical behaviour.


2012 ◽  
Vol 19 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Yong Liu ◽  
Zhaofeng Chen ◽  
Jianxun Zhu ◽  
Yun Jiang ◽  
Binbin Li

Abstract(SiO2)f/SiO2 composites reinforced with three-dimensional (3D) six-directional preform were fabricated by the silicasol-infiltration-sintering method. The nominal fiber volume fraction was 47%. To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural, and shear loading. The composite exhibited highly nonlinear stress-strain behavior under all the three types of loading. The results indicated that the 3D six-directional braided (SiO2)f/SiO2 composites exhibited superior flexural properties and good shear resistant as compared with other types of preform (2.5D and 3D four-directional)-reinforced (SiO2)f/SiO2 composites. 3D six-directional braided (SiO2)f/SiO2 composite exhibited graceful failure behavior under loading. The addition of 5th and 6th yarns resulted in controlled fracture and hence these 3D six-directional braided composites could possibly be suitable for thermal structure components.


2008 ◽  
Vol 162 (3) ◽  
pp. 404-410 ◽  
Author(s):  
M. Balooch ◽  
S. Habelitz ◽  
J.H. Kinney ◽  
S.J. Marshall ◽  
G.W. Marshall

Author(s):  
Rachel C. Paietta ◽  
Sara E. Olesiak ◽  
Virginia L. Ferguson

Cortical bone is a hierarchical, composite material composed of mineralized collagen fibrils organized into lamellae and osteons as classically described by Lakes [1]. The inherent heterogeneity and hierarchy of bone tissue makes it an interesting material to study at various size scales using a range of spherical tip sizes in nanoindentation. Further, the prevalence of pointed, Berkovich nanoindenter tips enable researchers to readily generate nanoindentation data. However, other tip geometries and sizes may provide an advantage over the Berkovich tip by enabling a more elastic contact and testing over a range of contact areas and structures.


2013 ◽  
Vol 101A (9) ◽  
pp. 2507-2514 ◽  
Author(s):  
Therese Bou-Akl ◽  
Richard Banglmaier ◽  
Rebecca Miller ◽  
Pamela VandeVord

2017 ◽  
Vol 15 (4) ◽  
pp. 980-990 ◽  
Author(s):  
Yanqiang Liu ◽  
Tianming Du ◽  
Yapeng Sun ◽  
Qingling Feng ◽  
Xufeng Niu

Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


Sign in / Sign up

Export Citation Format

Share Document