Computations for a Three-by-Three Array of Protrusions Cooled by Liquid Immersion: Effect of Substrate Thermal Conductivity

1995 ◽  
Vol 117 (4) ◽  
pp. 294-300 ◽  
Author(s):  
D. Mukutmoni ◽  
Y. K. Joshi ◽  
M. D. Kelleher

A computational study of natural convection in an enclosure as applied to applications in cooling of electronic components is reported. The investigation is for a configuration consisting of a three by three array of heated protrusions placed on a vertical substrate. The vertical sidewalls are all insulated, and the top and bottom walls serve as isothermal heat sinks. A thin layer at the back of each protrusion is the heat source, where heat is generated uniformly and volumetrically. The coolant is the flourinert liquid FC75. The code was first validated with experimental results reported earlier on the same configuration. The effect of the substrate conductivity, κs on the heat transfer and fluid flow was then studied for power levels of 0.1 and 0.7 Watts per protrusion. The computations indicate that the effect of increasing κs is dramatic. The protrusion temperatures which were found to be nominally steady, were substantially reduced. The percentage of generated power that is directly conducted to the substrate increased with an increase in κs. The fluid velocity field, which was unsteady, was not significantly affected by changes in κs.

2002 ◽  
Vol 124 (3) ◽  
pp. 164-169 ◽  
Author(s):  
H. B. Ma ◽  
G. P. Peterson

An extensive numerical analysis of the temperature distribution and fluid flow in a heat sink currently being used for cooling desktop computers was conducted, and demonstrated that if the base of a heat sink was fabricated as a heat pipe instead of a solid material, the heat transfer performance could be significantly increased. It was shown that as the heat sink length increases, the effect of the thermal conductivity of the base on the heat transfer performance increases to be a predictable limit. As the thermal conductivity is increased, the heat transfer performance of heat sinks is enhanced, but cannot exceed this limit. When the thermal conductivity increases to 2,370 W/m-K, the heat transfer performance of the heat sinks will be very close to the heat transfer performance obtained assuming a base with infinite thermal conductivity. Further increases in the thermal conductivity would not significantly improve the heat transfer performance of the heat sinks.


2019 ◽  
Vol 12 (2) ◽  
pp. 61-71 ◽  
Author(s):  
Barik AL-Muhjaa ◽  
Khaled Al-Farhany

The characteristics of the conjugate natural convection of (Al2O3-water) nanofluid inside differentially heated enclosure is numerically analyzed using COMSOL Multiphysics (5.3a). The enclosure consists of two vertical walls, the left wall has a thickness and maintain at a uniform hot temperature, while the opposite wall at cold temperature and the horizontal walls are isolated. A high thermal conductivity thin baffle has been added on the insulated bottom wall at a different inclination angles. The effect of the volume fractions of nanoparticles (f), Rayleigh number (Ra), solid wall thermal conductivity ratio (Kr), baffle incline angles (Ø) and the thickness of solid wall (D) on the isothermal lines, fluid flow patterns and the average Nusselt number (Nu)  has been investigated. At low Rayleigh number (Ra=103 to 104) the Isothermal lines are parallel with the vertical wall which is characteristic of conduction heat transfer. on the other hand, when Rayleigh number increase to (Ra=106),  the isotherms lines distribution in the inner fluid become parallel curves with the adiabatic horizontal walls of the enclosure and smooth in this case convection heat transfer becomes dominant. As the Rayleigh number further increases, the average Nusselt number enhance because of buoyancy force become stronger. In addition, the fluid flow within the space is affected by the presence of a fin attached to the lower wall that causes blockage and obstruction of flow near the hot wall, hence the recirculation cores become weak and effect on the buoyant force. The maximum value of the stream function can be noticed in case of nanofluid at (Ø=60), whereas they decrease when (Ø > 60), where the baffle obstruction causing decreases in flow movement. So that the left region temperature increases which cause reduction of the convective heat transfer by the inner fluid temperatures. This is an indication of enhancing of insulation. When the inclination angle increases (Ø >90), the baffle obstruction on flow and fluid resistance becomes smaller and the buoyancy strength increase, as a result, the heat transfer is increasing in this case. As a result of increasing the thermal conductivity from 1 to 10, an increase in the amount of heat transferred through the solid wall to the internal fluid have been noticed. This change can be seen in the isothermal lines, also, there was growth and an increase in the temperature gradient. The increasing of wall thickness from (D=0.1 to 0.4) leads to reduce the intensive heating through the solid wall as well as small heat transferred to the inner fluid. Therefore, it can be noticed that when the wall thickness increases the stream function decrease.


Author(s):  
Steven Miner

This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular, the effect of bosses, used for mounting components, on the fluid flow distribution and temperature distribution in the heat sink are evaluated. A typical heat sink has fins sandwiched between top and bottom plates, with electronic components mounted on the plates. The top and bottom plates spread the heat generated in the components to reduce the local heat flux. The fins substantially increase the heat transfer area, reducing the temperature rise from the coolant to the top and bottom plates. In this case a uniform distribution of flow across the heat sink can be achieved and there will be no localized hot spots. Ideally there are no protrusions into the finned portion of the heat sink which would cause disruptions in the uniform flow through the heat sink. However, a boss may be needed to bolt a component to the heat sink. The presence of the boss has three effects on the heat sink performance. The boss disrupts the flow in its immediate vicinity, increasing the thermal resistance. This will cause an increase in operating temperature at that location. In addition, the boss will change the flow distribution in the heat sink. Locations upstream and downstream of the boss may see reduced flow due to the obstruction, which in turn will cause an increase in operating temperature for these areas of the heat sink. Finally, the change in flow distribution may increase the pressure drop through the entire heat sink, increasing the power required to operate the system. The purpose of this study is to numerically evaluate the clearance requirements around circular bosses. Comparisons between an unobstructed heat sink and a heat sink with an obstruction are made for the maximum component temperature rise, the pressure drop and the flow distribution. Clearance ratios, diameter of the fin cut out to boss diameter, were varied from 1.1 to 3.3. The Reynolds number for the flow was varied from roughly 3000 to 70,000 based on the hydraulic diameter of flow passage.


2020 ◽  
Vol 9 (1) ◽  
pp. 338-351
Author(s):  
Usha Shankar ◽  
N. B. Naduvinamani ◽  
Hussain Basha

AbstractA two-dimensional mathematical model of magnetized unsteady incompressible Williamson fluid flow over a sensor surface with variable thermal conductivity and exterior squeezing with viscous dissipation effect is investigated, numerically. Present flow model is developed based on the considered flow geometry. Effect of Lorentz forces on flow behaviour is described in terms of magnetic field and which is accounted in momentum equation. Influence of variable thermal conductivity on heat transfer is considered in the energy equation. Present investigated problem gives the highly complicated nonlinear, unsteady governing flow equations and which are coupled in nature. Owing to the failure of analytical/direct techniques, the considered physical problem is solved by using Runge-Kutta scheme (RK-4) via similarity transformations approach. Graphs and tables are presented to describe the physical behaviour of various control parameters on flow phenomenon. Temperature boundary layer thickens for the amplifying value of Weissenberg parameter and permeable velocity parameter. Velocity profile decreased for the increasing squeezed flow index and permeable velocity parameter. Increasing magnetic number increases the velocity profile. Magnifying squeezed flow index magnifies the magnitude of Nusselt number. Also, RK-4 efficiently solves the highly complicated nonlinear complex equations that are arising in the fluid flow problems. The present results in this article are significantly matching with the published results in the literature.


1980 ◽  
Vol 102 (4) ◽  
pp. 636-639 ◽  
Author(s):  
J. R. Parsons ◽  
J. C. Mulligan

A study of the onset of transient natural convection from a suddenly heated, horizontal cylinder of finite diameter is presented. The termination of the initial conductive and “locally” conuectiue heat transfer regime which precedes the onset of global natural convection is treated as a thermal stability phenomenon. An analysis is presented wherein the effects of finite cylinder diameter, cylinder heat capacity, and cylinder thermal conductivity are included in calculations of the convective delay time. A simple experimental apparatus is described and data presented. The thermal stability analysis is confirmed experimentally and data is presented which indicates localized natural convection prior to global motion.


Author(s):  
Tunc Icoz ◽  
Qinghua Wang ◽  
Yogesh Jaluria

Natural convection has important implications in many applications like cooling of electronic equipment due to its low cost and easy maintenance. In the present study, two-dimensional natural convection heat transfer to air from multiple identical protruding heat sources, which simulate electronic components, located in a horizontal channel has been studied numerically. The fluid flow and temperature profiles, above the heating elements placed between an adiabatic lower plate and an isothermal upper plate, are obtained using numerical simulation. The effects of source temperatures, channel dimensions, openings, boundary conditions, and source locations on the heat transfer from and flow above the protruding sources are investigated. Different configurations of channel dimensions and separation distances of heat sources are considered and their effects on natural convection heat transfer characteristics are studied. The results show that the channel dimensions have a significant effect on fluid flow. However, their effects on heat transfer are found to be small. The separation distance is found to be an important parameter affecting the heat transfer rate. The numerical results of temperature profiles are compared with the experimental measurements performed using Filtered Rayleigh Scattering (FRS) technique in an earlier study, indicating good agreement. It is observed that adiabatic upper plate assumption leads to better temperature predictions than isothermal plate assumption.


Sign in / Sign up

Export Citation Format

Share Document