Experimental Analysis of Air∕Oil Separator Performance

Author(s):  
K. Willenborg ◽  
M. Klingsporn ◽  
S. Tebby ◽  
T. Ratcliffe ◽  
P. Gorse ◽  
...  

Within the European research project (Advanced Transmission and Oil System Concepts), a systematic study of the separation efficiency of a typical aeroengine air∕oil separator design was conducted. The main objectives were to obtain a basic understanding of the main separation mechanisms and to identify the relevant parameters affecting the separation efficiency. The results of the study contribute to an optimized separator technology. Nonintrusive optical measurement techniques like laser diffraction and multiple wavelength extinction were applied to analyze the separation efficiency and identify potential optimization parameters. Oil mist with defined oil droplet size distribution was supplied to the breather. By simultaneously measuring particle size and oil concentration upstream and downstream of the breather, the separation mechanism was analyzed and the separation efficiency was assessed. In addition, the pressure drop across the separator was measured. The pressure drop is an important design feature and has to be minimized for proper sealing of the engine bearing chambers. The experimental programe covered a variation of air flow, oil flow, shaft speed, and droplet size. The main emphasis of the investigations was on the separation of small droplets with a diameter of up to 10μm. The following trends on separation efficiency of small droplets were observed: The separation efficiency increases with increasing rotational speed, with increasing particle size, and with decreasing air flow rate. In parallel, the pressure drop across the breather increases with increasing speed and increasing air flow.

Author(s):  
K. Willenborg ◽  
M. Klingsporn ◽  
S. Tebby ◽  
T. Ratcliffe ◽  
P. Gorse ◽  
...  

Within the European research project ATOS (Advanced Transmission and Oil System Concepts) a systematic study of the separation efficiency of a typical aero-engine air/oil separator design was conducted. The main objectives were to obtain a basic understanding of the main separation mechanisms and to identify the relevant parameters affecting the separation efficiency. The results of the study contribute to an optimised separator technology. Nonintrusive optical measurement techniques like laser diffraction and multiple wavelength extinction were applied to analyse the separation efficiency and identify potential optimisation parameters. Oil mist with defined oil droplet size distribution was supplied to the breather. By simultaneously measuring particle size and oil concentration upstream and downstream of the breather the separation mechanism was analysed and the separation efficiency was assessed. In addition, the pressure drop across the separator was measured. The pressure drop is an important design feature and has to be minimised for proper sealing of the engine bearing chambers. The experimental programme covered a variation of airflow, oil flow, shaft speed, and droplet size. The main emphasis of the investigations was on the separation of small droplets with a diameter of up to 10 μm. The following trends on separation efficiency of small droplets were observed: the separation efficiency increases with increasing rotational speed, with increasing particle size and with decreasing air flow rate. In parallel, the pressure drop across the breather increases with increasing speed and increasing airflow.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1233
Author(s):  
Umair Jamil Ur Rahman ◽  
Artur Krzysztof Pozarlik ◽  
Thomas Tourneur ◽  
Axel de Broqueville ◽  
Juray De Wilde ◽  
...  

In this paper, an intensified spray-drying process in a novel Radial Multizone Dryer (RMD) is analyzed by means of CFD. A three-dimensional Eulerian–Lagrangian multiphase model is applied to investigate the effect of solids outlet location, relative hot/cold airflow ratio, and droplet size on heat and mass transfer characteristics, G-acceleration, residence time, and separation efficiency of the product. The results indicate that the temperature pattern in the dryer is dependent on the solids outlet location. A stable, symmetric spray behavior with maximum evaporation in the hot zone is observed when the solids outlet is placed at the periphery of the vortex chamber. The maximum product separation efficiency (85 wt %) is obtained by applying high G-acceleration (at relative hot/cold ratio of 0.75) and narrow droplet size distribution (45–70 µm). The separation of different sized particles with distinct drying times is also observed. Smaller particles (<32 µm) leave the reactor via the gas outlet, while the majority of big particles leave it via the solids outlet, thus depicting in situ particle separation. The results revealed the feasibility and benefits of a multizone drying operation and that the RMD can be an attractive solution for spray drying technology.


Author(s):  
Ramin Dabirian ◽  
Shihao Cui ◽  
Ilias Gavrielatos ◽  
Ram Mohan ◽  
Ovadia Shoham

During the process of petroleum production and transportation, equipment such as pumps and chokes will cause shear effects which break the dispersed droplets into smaller size. The smaller droplets will influence the separator process significantly and the droplet size distribution has become a critical criterion for separator design. In order to have a better understanding of the separation efficiency, estimation of the dispersed-phase droplet size distribution is very important. The objective of this paper is to qualitatively and quantitatively investigate the effect of shear imparted on oil-water flow by centrifugal pump. This paper presents available published models for the calculation of droplet size distribution caused by different production equipment. Also detailed experimental data for droplet size distribution downstream of a centrifugal pump are presented. Rosin-Rammler and Log-Normal Distributions utilizing dmax Pereyra (2011) model as well as dmin Kouba (2003) model are used in order to evaluate the best fit distribution function to simulate the cumulative droplet size distribution. The results confirm that applying dmax Pereyra (2011) model leads to Rosin-Rammler distribution is much closer to the experimental data for low shear conditions, while the Log-Normal distribution shows better performance for higher shear rates. Furthermore, the predictions of Modified Kouba (2003) dmin model show good results for predicting the droplet distribution in centrifugal pump, and even better predictions under various ranges of experiments are achieved with manipulating cumulative percentage at minimum droplet diameter F(Dmin).


Author(s):  
Jose G. Severino ◽  
Luis E. Gomez ◽  
Steve J. Leibrandt ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Large gravity separation tanks play an essential role in crude oil production in many fields worldwide. These tanks are used to separate water from an oil-rich stream before safely returning it to the environment. The oil/water dispersion enters the tanks through a feed spreader consisting of an array of pipes with small effluent nozzles. A major challenge is being able to predict oil/water dispersion distribution along the spreader as well as, the maximum water droplet size exiting through the effluent nozzles, under a given set of conditions. The capacity of the studied tank is 80,000 barrels (12,719 m3). Current feed stream is about 60,000 bpd (9,540 m3/day) of wet crude containing about 20% water by volume. A significant increase in flow rates and water volume fraction is anticipated [7], as more wells are added and existing ones mature. This work is aimed at investigating the separation performance of these tanks under current and future flow conditions; focusing primarily on the flow phenomena and droplet size distribution inside the spreader. The main objective is then to identify the impact of the spreader’s geometry and piping configuration on flow behavior and tank’s separation efficiency. The final product provides key information needed for mechanistic modeling the tank separation performance and optimizing tank components’ design. The feed spreader is simulated using Computational Fluid Dynamics (CFD) to assess oil/water flow distribution inside the network. Droplet size distribution along branch-pipes effluent nozzles in, including droplet breakup and coalescence has been studied using the Gomez mechanistic model [2] with input from CFD results. An experimental investigation of the spreader using a scaled prototype was also conducted to better understand flow phenomena and verify the CFD models. Results confirm the occurrence of significant maldistribution of the water and oil phases along the spreader that could impair separation efficiency.


1982 ◽  
Vol 104 (3) ◽  
pp. 313-317 ◽  
Author(s):  
J. M. Tishkoff ◽  
D. C. Hammond ◽  
A. R. Chraplyvy

Plume shape, vaporization, droplet-size distribution, and number density of a solid-cone fuel spray were studied with both conventional and novel measurement techniques. Minor differences in spray plume shape were observed by measurements with photography, pulsed laser shadowgraphy, and in-line infrared spectroscopy. Laser Mie scattering showed the dispersion of small numbers of droplets beyond spray boundaries as determined by other measurements. A new optical method for nonintrusive, local, time-averaged measurement of vapor concentration, droplet-size distribution and number density within an axisymmetric spray is introduced. For the spray studied this method showed that vapor is confined to the spray plume and that vapor concentration and the concentration of small-diameter droplets exhibit analogous behavior.


2021 ◽  
pp. 1-12
Author(s):  
Haoqi Lilan ◽  
Junbin Qian ◽  
Nan Pan

Nozzle spray atomization is widely used in industrial and agricultural production processes and is a very complicated physical change. The spray atomization of the nozzle is a process in which the droplets are continuously broken into finer particles under the action of force, in order to study the effect of nozzle atomization, that is, droplet size distribution characteristics. The experimental average mathematical model of droplet size distribution was established by introducing the average diameter of Sutter (SMD). The droplet size distribution in the atomization field of the nozzle is studied by simulation. In the experimental study, the high-speed camera, external mixing air atomizing nozzle platform experimental device and image processing were used, and the atomization field was divided into multiple observation areas. Through the measurement of several local observation areas, the droplet size distribution of the whole atomization field is constructed. It provides a reference for the study of the atomization field of the nozzle and a basis for the intuitive understanding of the droplet size distribution in the atomization field of the nozzle. The effective atomization area of the nozzle atomization was selected to study the influence of the liquid flow rate, the liquid temperature and the nozzle pressure on the atomized particle size distribution of the externally mixed atomizing nozzle. The internal law is obtained, which provides a basis and reference for effectively controlling the atomization effect in the atomization field.


Author(s):  
Han-Ping Chen ◽  
Qiao He ◽  
Shi-Hong Zhang ◽  
Chu-Guang Zheng ◽  
De-Chang Liu ◽  
...  

Besides several cyclone separators, some inertial separators had also developed and applied in the circulating fluidized bed (CFB) boilers. The inertial separators have some advantages such as simple structure, small volume, low pressure drop, easy scale-up and so on. But almost every existing inertia separator has great difficulty in solving the main shortage of lower separation efficiency especially for fine particles. Based on the research for the separation mechanism and performances of inertial separators, the State Key Laboratory of Coal Combustion (SKLCC) had developed a novel inertial separator for CFB boilers. The patented separator improves the structure of the U-beam that is the separation element of U-beam separators of Studsvik Energiteknik (Sweden) and Babcok & Wilcox (USA). A ash channel is added to avoid re-entrainment of the separated solid downward along the U-beam. Test result indicates that the novel separator has great higher separation efficiency with the same pressure drop, compared with the U-beams at same conditions. The novel separator is more suitable for a larger CFB boiler or repowering projects as primary separator than the U-beams. The novel inertial separator had been used for designing 25 ∼ 420 tons of steam per hour (t/h) two-stage-recirculation CFB boilers. The two-stage-recirculation CFB boilers in capacity of 25 t/h and 65t/h had been put into operation. This paper presents the work on research, development and application of the novel inertial separator with high separation efficiency and low pressure drop.


Author(s):  
Lele Yang ◽  
Jing Wang ◽  
Li Zou

Abstract The gas–liquid cylindrical cyclone (GLCC) employs gravitational and centrifugal forces to realize gas-liquid separation. The aim of this study is to understand the droplet size distribution and pressure control in the GLCC via experiment and numerical analysis. The droplet size and pressure distributions were measured using Malvern RTsizer and pressure transmitters, respectively. The Discrete Phase Model was used to numerically analyze the swirling hydrodynamics of the GLCC. The results showed that the increase in the gas superficial velocity decreased the droplet size distribution at the inlet as a whole due to the shear effect and flow instability. The increase in the liquid superficial velocity only increased the small droplet size distribution at the inlet for the limitation of the gas’s carrying capacity. The pressure loss mainly occurred at the inlet and the overflow outlet. When the liquid level was remained below the inlet and above the liquid outlet, the liquid level and the liquid outlet section approximately met the Bernoulli equation for a finite large flow beam. With the increase in the pressure at the gas outlet, the liquid film fell back and the separation efficiency increased gradually. These results are helpful for further spreading applications of the GLCC in industry.


Sign in / Sign up

Export Citation Format

Share Document