Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 1—Framework of Technical Approach and Wake–Stator Blade Interactions

1999 ◽  
Vol 121 (3) ◽  
pp. 377-386 ◽  
Author(s):  
T. V. Valkov ◽  
C. S. Tan

In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stators with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-averaged performance of the stator. Detailed interrogation of the computed flow field showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically, there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated nontransitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 1, the focus will be on the framework of technical approach, and the interaction of stator with the moving upstream rotor wakes.

Author(s):  
T. V. Valkov ◽  
C. S. Tan

In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stator with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-average performance of stator. Detailed interrogation of the computed flowfield showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated non-transitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 1, the focus will be on the framework of technical approach, and the interaction of stator with the moving upstream rotor wakes.


1999 ◽  
Vol 121 (3) ◽  
pp. 387-397 ◽  
Author(s):  
T. V. Valkov ◽  
C. S. Tan

In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stator with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-averaged performance of the stator. Detailed interrogation of the computed flowfield showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically, there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated nontransitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 2, the focus will be on the interaction of stator with the moving upstream rotor tip and streamwise vortices, the controlling parametric trends, and implications on design.


Author(s):  
T. V. Valkov ◽  
C. S. Tan

In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stator with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-average performance of stator. Detailed interrogation of the computed flowfield showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated non-transitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 2, the focus will be on the interaction of stator with the moving upstream rotor tip and streamwise vortices, the controlling parametric trends, and implications on design.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


Author(s):  
Martina Ricci ◽  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone

Abstract The tip leakage flow in turbine and compressor blade rows is responsible for a relevant fraction of the total loss. It contributes to unsteadiness, and have an important impact on the operability range of compressor stages. Experimental investigations and, more recently, scale-resolving CFD approaches have helped in clarifying the flow mechanism determining the dynamics of the tip leakage vortex. Due to their continuing fundamental role in design verifications, it is important to establish whether RANS/URANS approaches are able to reproduce the effects of such a flow feature, in order to correctly drive the design of the next generation of turbomachinery. Base studies are needed in order to accomplish this goal. In the present work the tip leakage flow in axial compressor rotor blade cascade have been studied. The cascade was tested experimentally in Virginia Tech Low Speed Cascade Wind Tunnel in both stationary and moving endwall configurations. Numerical analyses were performed using the TRAF code, a state-of-the-art in-house-developed 3D RANS/URANS flow solver. The impact of the numerical framework was investigated selecting different advection schemes including a central scheme with artificial dissipation and a high-resolution upwind strategy. In addition, two turbulence models have been used, the Wilcox linear k–ω model and a non-linear eddy viscosity model (Realizable Quadratic Eddy Viscosity Model), which accounts for turbulence anisotropy. The numerical results are scrutinized using the available measurements. A detailed discussion of the vortex evolution inside the blade passage and downstream of the blade trailing edge is presented in terms of streamwise velocity, streamwise vorticity, and turbulent kinetic energy contours. The purpose is to identify guidelines for obtaining the best representation of the vortex dynamics, with the methodologies usually employed in routine design iterations and, at the same time, evidence their weak aspects that need further modelling efforts.


Author(s):  
K. Ananthakrishnan ◽  
Shyama Prasad Das ◽  
B. V. S. S. S. Prasad

Abstract The main goal of modern axial compressor development is to increase the power to weight ratio with higher efficiency. In the present investigation, highly loaded single stage axial compressor with tandem stator vanes is used. Tandem vanes help in attaining the compact compressor stage along with high pressure loading. It is designed for a stage pressure ratio of 2, mass flow rate of 9.02 kg/s operating at 30800 rpm resulting in transonic flow field. The aerodynamic performance of this compressor detoriates due to the tip leakage and secondary flows. Steady-state numerical investigation is carried out to study the flow structures near the tip region of transonic rotor and how different tip gaps influence the overall performance of the compressor. Further the effects of tip leakage flow variation on the performance of tandem vanes are also highlighted. Transonic fan stage with baseline tip gap of 0.5mm is analyzed along with different tip clearance values ranging from 0 % to 3 % of axial chord. Three-dimensional viscous Reynolds Averaged Navier Stokes (RANS) equations are solved using SST k-ω turbulence model. Computational domain discretized with high quality hexahedral elements (Y+ < 2) in AUTOGRID, Numeca. The numerical procedure is verified against the experimental results of Rotor37 transonic rotor test case. Tip leakage losses contribute a substantial amount to the total loss of stage. Overall performance and the stall characteristics for the compressor stage has been evaluated for different tip gap variations.. Further, the topological properties are exploited to visualize the critical points and separation lines on rotor and tandem vanes. Increase in rotor total pressure loss coefficient is observed with increasing tip gap. In contrary, overall total pressure loss coefficient improves for smaller tip gap values and then detoriates. It is observed optimum tip gap height lies close to the 1.125mm, 2% of baseline design value.


Author(s):  
Bhaskar Roy ◽  
A. M. Pradeep ◽  
A. Suzith ◽  
Dinesh Bhatia ◽  
Aditya Mulmule

The present study involves simulation of a single compressor rotor with a high hub-to-tip ratio blade. The study includes the effect of variation of tip gap, of tip shapes and of inlet axial velocity profiles, with inflows simulated similar to that of a typical rear stage environment of a multi-stage axial compressor. Numerical studies were carried out on a baseline rotor blade (without sweep or dihedral) and then on blades with sweep and dihedral applied at the tip region of the rotor. Simulation of these part-span sweep and dihedral shapes are done to study their effects on blade tip leakage flow. Results show that sweep and dihedral, in some cases, produce favorable tip flows, improving blade aerodynamics. Positive dihedral caused weakening of tip leakage vortex at design point as well as at peak pressure point. Negative dihedral may help postpone stall at the high pressure, low flow operation. Backward sweep weakened tip vortex at the design point. Contrary to some of the studies reported earlier forward sweep, when applied at the tip region, showed performance deterioration over the most of the operating range of the high hub-to-tip rotor.


Author(s):  
Xiaochen Mao ◽  
Bo Liu

Based on a validation of the numerical methods with an experiment, numerical simulations are carried out to study the effect of tip clearance size on the performance and tip leakage flow in a dual-stage counter-rotating axial compressor. The predicted results showed that the variation of the tip clearance size in rotor2 has a more significant impact on the overall performance and stall margin of the compressor. In addition, the impact of the tip clearance size effect is mainly on the rotor with the tip clearance size variation. The variation of the tip clearance size in rotor2 almost has no influence on the performance of rotor1, while the performance of rotor2 is increased about 1.37% at near-stall point when the tip clearance size of rotor1 is increased to 1.0 mm from 0.5 mm. At peak efficiency condition, the tip clearance size variation in rotor1 has remarkable influence on the tip leakage vortex intensity, onset point and trajectory in rotor1, but has little influence on those in rotor2. However, the tip clearance size variation in rotor2 has remarkable effect on those in both rotors. Different tip clearance size combination schemes can impact the stall-free characteristic in the counter-rotating axial compressor.


Author(s):  
Hao Wang ◽  
Yadong Wu ◽  
Hua Ouyang

This paper presents a numerical investigation on rotating instability in a low speed axial compressor. Full-annulus unsteady simulations were carried out to precisely simulate the circumferential propagating flow disturbances in the rotor tip region. Through long-term monitoring of the unsteady pressure signals, the multiple peaks of the broadband hump of rotating instability in frequency spectrum were successfully captured, which were in accordance with the results from casing pressure measurements. Frequency characteristics, azimuthal modal features and unsteady tip vortex structures were analyzed to interpret the source features and flow mechanism of rotating instability. Three vortex mechanisms have been found which induce circumferential propagating flow disturbance-tip leakage vortex oscillation with inter-blade-passage phase delay, detached vortex from tip leakage vortex and radial vortex near the leading edge plane. The tip leakage vortex oscillation with inter-blade-passage phase delay induce rotating flow disturbance with multiple modes including both long and short scale disturbances, which is considered as the original driving force of rotating instability. The multi-peak features of rotating instability are caused by the interaction between the short wavelength disturbance and the long wavelength disturbance, of which the mode order is unit. Though the number of detached vortex and radial vortex in one annulus agree with the mode order of rotating instability, that is rather the consequence than the cause of it.


Author(s):  
Stefan Stollenwerk ◽  
Dirk Nu¨rnberger

The unsteady interaction between blade rows is very important in highly loaded compressors because of its influence on operating performance. One important effect in this context is the impact of a rotor bow shock on the wake of an upstream stator blade. A new transport model is proposed which introduces such deterministic unsteady effects in a steady solution environment. Deterministic stresses are added to the stationary RANS equations by means of an additional source term. The presented approach combines the advantages of time-accurate and stationary simulation procedures, i.e. physical accuracy and computational efficiency. A generic cascade of flat plates and a transonic stator-rotor configuration are investigated numerically using time-accurate methods in order to analyze the wake-shock interactions. The results are compared with steady mixing-plane solutions to point out their shortcomings regarding unsteady effects and to illustrate the demands of a deterministic stress approach. The model is then calibrated for the generic cascade before it is applied to the real three-dimensional compressor stage.


Sign in / Sign up

Export Citation Format

Share Document