Dispersion Investigation in the Split Hopkinson Pressure Bar

1990 ◽  
Vol 112 (3) ◽  
pp. 309-314 ◽  
Author(s):  
J. C. Gong ◽  
L. E. Malvern ◽  
D. A. Jenkins

Dispersion of an elastic wave propagating in a 76.2-mm-diameter (3 in.) Split Hopkinson Pressure Bar system was investigated with two consecutive pulses recorded in the transmitter bar. Assuming that the dispersive high frequency oscillatory components riding on the top of the main pulse originate from the first mode vibration, the dispersion was corrected by using the Fast Fourier Transform (FFT) and Fourier series expansion numerical schemes. The good agreement validates the assumption that only the first mode was significant. The dispersion correction technique was employed in a test of a concrete specimen having the same diameter as that of the SHPB. Better agreement of the two specimen-bar interface stresses versus time and fewer oscillations in the stress-strain curve demonstrated advantages of the application of dispersion corrections.

1983 ◽  
Vol 105 (1) ◽  
pp. 61-66 ◽  
Author(s):  
P. S. Follansbee ◽  
C. Frantz

Elastic wave propagation in the split Hopkinson pressure bar (SHPB) is discussed with an emphasis on the origin and nature of the oscillations that often trail the leading edge of the pressure wave. We show that in the conditions of the SHPB test the pressure bars vibrate in the fundamental mode and that elastic wave propagation can be fully described mathematically. Excellent agreement is found between experimental results and predictions of the mathematical treatment. This suggests that dispersion effects in the pressure bars can be removed from the strain gage records, which reduces the magnitude of the oscillations in the resulting stress strain curve.


2010 ◽  
Vol 654-656 ◽  
pp. 2483-2486
Author(s):  
Muhammad Agus Kariem ◽  
John H. Beynon ◽  
Dong Ruan

The split Hopkinson pressure bar (SHPB) is the most commonly used technique to characterize the dynamic behaviour of materials at very high strain rates. However, a classic single specimen test only generates a single stress-strain curve at the average strain rate of the test. This paper proposes three arrangements on the use of double specimens in SHPB compression testing. All waves propagating along the bars have been used to analyse the dynamic behaviour of the specimens. To simulate the test and predict its dynamic performance, an axisymmetric finite element analysis using LS-DYNA was conducted for the experiment using 13 mm bar diameter. The validity of the simulations was checked with experimental data from normal SHPB testing. Based on the simulations, the modified techniques are achievable and at least two stress-strain curves of materials can be extracted without violating the requirement of a valid SHPB test.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5061
Author(s):  
Hafiz Fadillah ◽  
Sigit Puji Santosa ◽  
Leonardo Gunawan ◽  
Akbar Afdhal ◽  
Agus Purwanto

The dynamic behavior of the lithium-ion battery is evaluated by simulating the full battery system and each corresponding component, including the jellyroll and thin-foil electrodes. The thin-foil electrodes were evaluated using a novel design of split Hopkinson tensile bar (SHTB), while the jellyroll was evaluated using the split Hopkinson pressure bar (SHPB). A new stacking method was employed to strengthen the stress wave signal of the thin-foil electrodes in the SHTB simulation. The characteristic of the stress–strain curve should remain the same regardless of the amount of stacking. The jellyroll dynamic properties were characterized by using the SHPB method. The jellyroll was modeled with Fu-Chang foam and modified crushable foam and compared with experimental results at the loading speeds of 20 and 30 m/s. The dynamic behavior compared very well when it was modeled with Fu-Chang foam. These studies show that the dynamic characterization of Li-ion battery components can be evaluated using tensile loading of stacked layers of thin foil aluminum and copper with SHTB methodology as well as the compressive loading of jellyroll using SHPB methodology. Finally, the dynamic performance of the full system battery can be simulated by using the dynamic properties of each component, which were evaluated using the SHTB and SHPB methodologies.


The mechanical behaviour of some metals has been investigated experimentally for compressive loading cycles of approximately 100 and 370 μs duration and for steady-state compressive loading. For the dynamic measurements the split Hopkinson pressure bar technique has been used in which cylindrical specimens are sandwiched between two rods and deformed under the action of a compressive stress wave induced by impacting the free end of one of the rods with a projectile launched by a light gas gun. The experimental results show that for the available range of strain rates the stress-strain curve is independent of strain rate. These results are compared with the mechanical behaviour predicted by a particular form of nonlinear mechanical equation of state.


2015 ◽  
Vol 799-800 ◽  
pp. 681-684 ◽  
Author(s):  
Hyun Ho Shin ◽  
Ho Yun Lee ◽  
Jong Bong Kim ◽  
Yo Han Yoo

A short split Hopkinson bar system with a total bar length of 3 m (a 2 m input bar plus a 1 m output bar), a striker length of 254 mm, and a diameter of 25.4 mm, is designed. Through numerical experiments, the stress vs. strain curve and the rate vs. strain curve of the specimen are obtained from the bar signals. These measured curves are reasonably consistent with the input stress-strain curve of the specimen for the numerical experiment and the prediction by the recently reported rate equation, respectively, verifying the reliability of the designed SHPB system.


2014 ◽  
Vol 566 ◽  
pp. 548-553 ◽  
Author(s):  
Nobuhiko Kii ◽  
Takeshi Iwamoto ◽  
Alexis Rusinek ◽  
Tomasz Jankowiak

The split Hopkinson pressure bar (SHPB) technique is widely-used to describe the impact compressive behavior of different materials including metals. During the impact test, the specimen deforms in a wide range of impact strain rate from 102 to 104 s-1. It is a reason why the method is studied for many years even though the structure of the apparatus based on the SHPB is simple. Actually, the cylindrical specimens are widely used for a compressive test and it is clearly seen that stress measured by the test includes the increment of stress (an error) derived by friction effect between a specimen and pressure bars. Therefore, it is important that the measured stress should indicate similar value as the proper stress of the material by reducing friction effect during not only quasi-static but also the impact test. Various attempts to reduce a friction effect in past have been conducted. A method to reduce friction effect is in general a use of lubricants. However, it is ineffective because it can be considered that this method contributes to an attenuation of the stress wave for obtaining the stress-strain curve under impact loading. Thus, rise time of waves obtained by the experiment becomes longer compared with a case not to use lubricants. Recently, a study can be found using a ring specimen, however, the determined thickness of the specimen is quite thin and it can be considered that a buckling effect cannot be vanished. In this study, a use of hollow specimen is suggested to solve the problem related to reduce the friction effect by decreasing a contact area between a specimen and pressure bars instead of a cylindrical specimen. The compressive experiments at various strain rates are conducted by using a hollow specimen.


Author(s):  
Philip Church ◽  
Rory Cornish ◽  
Ian Cullis ◽  
Peter Gould ◽  
Ian Lewtas

This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer–Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


Sign in / Sign up

Export Citation Format

Share Document