Comparison of a Cavity Solar Receiver Numerical Model and Experimental Data

1990 ◽  
Vol 112 (3) ◽  
pp. 183-190 ◽  
Author(s):  
R. E. Hogan ◽  
R. B. Diver ◽  
Wm. B. Stine

Results from a numerical model of axisymmetric solar cavity receivers are compared with experimental data for tests of a novel test bed receiver in the Sandia National Laboratories solar furnace. The computed energy transfer rates and temperatures are compared with the experimental data for different receiver geometries, aperture sizes, and operating conditions. In general, the agreement between the numerical model and the experimental data is better for the small-to-midsized apertures than for the large apertures. The analysis indicates that for the larger apertures, the convective heat losses are over predicted. It also suggests that these losses could be better characterized. Sensitivity analyses show that both the total solar energy input rate and the convective heat-loss coefficient significantly affect the receiver thermal performance and that the distribution of the input solar flux significantly affects the temperature distribution in the receiver.

2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Girijesh Mathur ◽  
Nachiketa Tiwari ◽  
Neha Chaturvedi

Abstract A ballistic compression type soft recovery system can stop a free-flying supersonic projectile in a controlled manner. The moment such a projectile enters the System, a normal shock gets created and starts hurtling down, to kick off a train of events involving shock reflections, diaphragm rupture, shock merger, creation of new shocks and contact discontinuities, and expansion wave-shock interactions. A good understanding of these phenomena and sensitivity of the System's performance to changes in design parameters is needed to design an efficient soft recovery system. Unfortunately, not much information is available about this. The present work fills this gap. We have developed a numerical model for the system and conducted sensitivity analyses using four design parameters; pressure, molecular weight, the ratio of specific heats, and temperature of gas used in the system. We show that while there is a strong, positive correlation between the first two parameters and projectile deceleration, the other two parameters are less critical. We conducted experiments to corroborate our conclusions and improve our numerical model. Post such improvements, we found the difference between simulation and experimental data to be acceptable. Experiments also confirmed the findings of our sensitivity studies. Finally, we conducted a two-dimensional finite volume analysis to understand the reasons underlying the residual difference between our numerical and experimental data. We show that such differences are due to pressure-rise at a point once a shock passes by it, and such a rise in pressure is attributable to boundary layer effects.


Author(s):  
Federico Cheli ◽  
Roberto Corradi ◽  
Giorgio Diana ◽  
Alan Facchinetti

Tramcar vehicles significantly differ from traditional railway vehicles both for the adopted structural configuration and design solutions and for the operating conditions. For this reason, a new numerical model specific for the analysis of tramcar dynamics has been developed by Politecnico di Milano. Before the numerical model can be adopted as a useful mean to analyse tramcar operational problems, the capability of the model to reproduce the actual tramcar dynamic behaviour has to be verified. The paper deals with the validation of the developed numerical model by means of comparison with experimental data.


2007 ◽  
Vol 2 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Federico Cheli ◽  
Roberto Corradi ◽  
Giorgio Diana ◽  
Alan Facchinetti

Tramcar vehicles significantly differ from traditional railway vehicles for both the adopted structural configuration and design solutions and the operating conditions. For this reason, a new numerical model specific for the analysis of tramcar dynamics has been developed at Politecnico di Milano. Before the numerical model can be adopted as a means to analyze tramcar dynamics in typical operating conditions, the capability of the model to reproduce the actual tramcar behavior has to be verified. This paper deals with the validation of the proposed numerical model by means of a comparison with experimental data.


Author(s):  
Puya Javidmand ◽  
Klaus A. Koffmann

Although HFC-134a is a common refrigerant for residential and mobile refrigeration systems, investigators are dealing with replacing it with new alternatives because of its harmful environmental and global warming effects. Recently HFO-1234yf and HFO-1234ze have been introduced as suitable alternative refrigerants because they have zero ozone depletion potential (ODP) and low global warming potential (GWP) and possess thermophysical properties similar to those of HFC-134a. Because there is no experimental data on the performance of these new refrigerants in capillary tubes and short-tube orifices, a recently developed numerical model for analysis of critical two-phase flow through these tubes is used to predict the critical mass flow rate and pressure distribution of HFO-1234yf and HFO-1234ze under various operating conditions. The applied numerical model is based on a comprehensive two-fluid model including the effects of two-phase flow patterns and liquid-phase metastability. The numerical method has been validated by comparing numerical results of the critical flows of HFC-134a, R-410A, and HCFC-22 with available experimental data. The developed numerical simulation is applied in order to develop comparison and selection charts for short-tube orifices based on the common refrigerant HFC-134a and the alternative new refrigerants HFO-1234yf and HFO-1234ze.


1974 ◽  
Author(s):  
S. Koncar-Djurdjevic ◽  
M. Mitrovic ◽  
S. Cvijovic ◽  
G. Popovic ◽  
Dimitrije Voronjec

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


Author(s):  
Hossein Gholizadeh ◽  
Doug Bitner ◽  
Richard Burton ◽  
Greg Schoenau

It is well known that the presence of entrained air bubbles in hydraulic oil can significantly reduce the effective bulk modulus of hydraulic oil. The effective bulk modulus of a mixture of oil and air as pressure changes is considerably different than when the oil and air are not mixed. Theoretical models have been proposed in the literature to simulate the pressure sensitivity of the effective bulk modulus of this mixture. However, limited amounts of experimental data are available to prove the validity of the models under various operating conditions. The major factors that affect pressure sensitivity of the effective bulk modulus of the mixture are the amount of air bubbles, their size and the distribution, and rate of compression of the mixture. An experimental apparatus was designed to investigate the effect of these variables on the effective bulk modulus of the mixture. The experimental results were compared with existing theoretical models, and it was found that the theoretical models only matched the experimental data under specific conditions. The purpose of this paper is to specify the conditions in which the current theoretical models can be used to represent the real behavior of the pressure sensitivity of the effective bulk modulus of the mixture. Additionally, a new theoretical model is proposed for situations where the current models fail to truly represent the experimental data.


1996 ◽  
Vol 118 (1) ◽  
pp. 164-172 ◽  
Author(s):  
C. H. Amon ◽  
K. S. Schmaltz ◽  
R. Merz ◽  
F. B. Prinz

A molten metal droplet landing and bonding to a solid substrate is investigated with combined analytical, numerical, and experimental techniques. This research supports a novel, thermal spray shape deposition process, referred to as microcasting, capable of rapidly manufacturing near netshape, steel objects. Metallurgical bonding between the impacting droplet and the previous deposition layer improves the strength and material property continuity between the layers, producing high-quality metal objects. A thorough understanding of the interface heat transfer process is needed to optimize the microcast object properties by minimizing the impacting droplet temperature necessary for superficial substrate remelting, while controlling substrate and deposit material cooling rates, remelt depths, and residual thermal stresses. A mixed Lagrangian–Eulerian numerical model is developed to calculate substrate remelting and temperature histories for investigating the required deposition temperatures and the effect of operating conditions on remelting. Experimental and analytical approaches are used to determine initial conditions for the numerical simulations, to verify the numerical accuracy, and to identify the resultant microstructures. Numerical results indicate that droplet to substrate conduction is the dominant heat transfer mode during remelting and solidification. Furthermore, a highly time-dependent heat transfer coefficient at the droplet/substrate interface necessitates a combined numerical model of the droplet and substrate for accurate predictions of the substrate remelting. The remelting depth and cooling rate numerical results are also verified by optical metallography, and compare well with both the analytical solution for the initial deposition period and the temperature measurements during droplet solidification.


Sign in / Sign up

Export Citation Format

Share Document