A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Roberto F. Ausas ◽  
Mohammed Jai ◽  
Gustavo C. Buscaglia

A numerical algorithm for fully dynamical lubrication problems based on the Elrod–Adams formulation of the Reynolds equation with mass-conserving boundary conditions is described. A simple but effective relaxation scheme is used to update the solution maintaining the complementarity conditions on the variables that represent the pressure and fluid fraction. The equations of motion are discretized in time using Newmark’s scheme, and the dynamical variables are updated within the same relaxation process just mentioned. The good behavior of the proposed algorithm is illustrated in two examples: an oscillatory squeeze flow (for which the exact solution is available) and a dynamically loaded journal bearing. This article is accompanied by the ready-to-compile source code with the implementation of the proposed algorithm.

Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 98 ◽  
Author(s):  
Bruno M.M. Pereira ◽  
Gonçalo A.S. Dias ◽  
Filipe S. Cal ◽  
Kumbakonam R. Rajagopal ◽  
Juha H. Videman

We present dimensionally reduced Reynolds type equations for steady lubricating flows of incompressible non-Newtonian fluids with shear-dependent viscosity by employing a rigorous perturbation analysis on the governing equations of motion. Our analysis shows that, depending on the strength of the power-law character of the fluid, the novel equation can either present itself as a higher-order correction to the classical Reynolds equation or as a completely new nonlinear Reynolds type equation. Both equations are applied to two classic problems: the flow between a rolling rigid cylinder and a rigid plane and the flow in an eccentric journal bearing.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


Author(s):  
Marcel Mahner ◽  
Pu Li ◽  
Andreas Lehn ◽  
Bernhard Schweizer

A detailed elasto-gasdynamic model of a preloaded three-pad air foil journal bearing is presented. Bump and top foil deflections are herein calculated with a nonlinear beamshell theory according to Reissner. The 2D pressure distribution in each bearing pad is described by the Reynolds equation for compressible fluids. With this model, the influence of the assembly preload on the static bearing hysteresis as well as on the aerodynamic bearing performance is investigated. For the purpose of model validation, the predicted hysteresis curves are compared with measured curves. The numerically predicted and the measured hysteresis curves show a good agreement. The numerical predictions exhibit that the assembly preload increases the bearing stiffness (in particular for moderate shaft displacements) and the bearing damping.


1984 ◽  
Vol 106 (4) ◽  
pp. 477-483 ◽  
Author(s):  
C. B. Watkins ◽  
H. D. Branch ◽  
I. E. Eronini

Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference approximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.


2003 ◽  
Vol 125 (2) ◽  
pp. 291-300 ◽  
Author(s):  
G. H. Jang ◽  
J. W. Yoon

This paper presents an analytical method to investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.


2019 ◽  
Vol 10 (6) ◽  
pp. 825-837
Author(s):  
Mushrek A. Mahdi ◽  
Ahmed Waleed Hussein

Purpose The purpose of this paper is to investigate the combined effect of wear and turbulence on the performance of a hydrodynamic journal bearing operating under Newtonian and couple stress fluids (CSF). Design/methodology/approach The analysis consists of a modified Reynolds equation of incompressible thin viscous films, and the film thickness model taking into account the wear effect. The governing equation was solved numerically using the finite difference approach. Findings The effect of both the wear parameter and the local Reynolds number on the performance characteristics of bearing has been presented and discussed. The obtained results observed that the characteristics of the intact and worn bearing in turbulent and laminar have been enhanced due to the non-Newtonian fluid (CSF) effect. Also, the results display that bearing worn and the turbulent regime cannot be neglected in calculating the performance characteristics of the bearing lubricated with Newtonian and non-Newtonian fluids. The results achieved from this study, specify that the bearing characteristics are significantly affected by these effects. Originality/value The paper investigates the behavior of hydrodynamic bearings considering different aspects simultaneously is interesting, and the application meets the current needs of improvement in modeling hydrodynamic bearings under different conditions.


2018 ◽  
Vol 159 ◽  
pp. 02042
Author(s):  
Mohammad Tauviqirrahman ◽  
Bayu Kurniawan ◽  
Jamari

Recently, a growing interest is given to the wall slip and the artificial texturing for improving the performance of lubricated sliding contact. The use of wall slip, artificial texturing, and the combination of slip and texturing can be the effective approach to enhance the performance of the bearing. The present study examines the effect of shaft eccentricity ratio on the hydrodynamic journal bearing performance. 3D numerical modelling based on modified Reynolds equation is used to analyse the effect of texturing and the wall slip on the characteristics of a hydrodynamically lubricated sliding contact. The analysis results point out that with respect to the load support and the power loss of the bearing, the use of wall slip on smooth surface is the most excellent configuration compared to other patterns (i.e. slip-texturing, pure texturing and conventional patterns). It is also confirmed that the wedge effect due to the shaft eccentricity has a significant role in altering the lubricant behaviour. Thus, a particular care must be taken in choosing the pattern of lubricated sliding contact as well as the shaft eccentricity.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 539
Author(s):  
Nebojsa Nikolic ◽  
Zivota Antonic ◽  
Jovan Doric ◽  
Dragan Ruzic ◽  
Stjepan Galambos ◽  
...  

The aim of this paper is to derive an equation for the temperature distribution in journal bearing oil film, in order to predict the thermal load of a bearing. This is very important for the prevention of critical regimes in a bearing operation. To achieve the goal, a partial differential equation of the temperature field was first derived, starting from the energy equation coupled with the Reynolds equation of hydrodynamic lubrication for a short bearing of symmetric geometry. Then, by solving the equation analytically, the function of temperature distribution in the bearing oil film has been obtained. The solution is applied to the journal bearing, for which the experimental data are available in the references. Finally, the obtained results have been compared to the corresponding experimental values for two operating regimes, and a good level of agreement was achieved.


Sign in / Sign up

Export Citation Format

Share Document