Effect of Controlled Ice Nucleation on Primary Drying Stage and Protein Recovery in Vials Cooled in a Modified Freeze-Dryer

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Stéphanie Passot ◽  
Ioan Cristian Tréléa ◽  
Michèle Marin ◽  
Miquel Galan ◽  
G. John Morris ◽  
...  

The freezing step influences lyophilization efficiency and protein stability. The main objective of this work was to investigate the impact on the primary drying stage of an ultrasound controlled ice nucleation technology, compared with usual freezing protocols. Lyophilization cycles involving different freezing protocols (applying a constant shelf cooling rate of 1°C/min or 0.2°C/min, putting vials on a precooled shelf, and controlling nucleation by ultrasounds or by addition of a nucleating agent) were performed in a prototype freeze-dryer. Three protective media including sucrose or maltodextrin and differing by their thermal properties and their ability to preserve a model protein (catalase) were used. The visual aspect of the lyophilized cake, residual water content, and enzymatic activity recovery of catalase were assessed after each lyophilization cycle and after 1 month of storage of the lyophilized product at 4°C and 25°C. The freezing protocols allowing increasing nucleation temperature (precooled shelf and controlled nucleation by using ultrasounds or a nucleating agent) induced a faster sublimation step and higher sublimation rate homogeneity. Whatever the composition of the protective medium, applying the ultrasound technology made it possible to decrease the sublimation time by 14%, compared with the freezing method involving a constant shelf cooling rate of 1°C/min. Concerning the enzyme activity recovery, the impact of the freezing protocol was observed only for the protective medium involving maltodextrin, a less effective protective agent than sucrose. Higher activity recovery results were obtained after storage when the ultrasound technology or the precooled shelf method was applied. Controlling ice nucleation during the freezing step of the lyophilization process improved the homogeneity of the sublimation rates, which will, in turn, reduce the intervial heterogeneity. The freeze-dryer prototype including the system of controlled nucleation by ultrasounds appears to be a promising tool in accelerating sublimation and improving intrabatch homogeneity.

2015 ◽  
Vol 15 (9) ◽  
pp. 13109-13166
Author(s):  
P. A. Alpert ◽  
D. A. Knopf

Abstract. Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An apparent cooling rate dependence ofJhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. In an idealized cloud parcel model applying variability in ISAs for each droplet, the model predicts enhanced immersion freezing temperatures and greater ice crystal production compared to a case when ISAs are uniform in each droplet. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.


2016 ◽  
Vol 16 (1) ◽  
pp. 35-46 ◽  
Author(s):  
T. Dinh ◽  
A. Podglajen ◽  
A. Hertzog ◽  
B. Legras ◽  
R. Plougonven

Abstract. The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved.With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, a low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is not necessarily inconsistent with observations of low INCs.


2015 ◽  
Vol 15 (6) ◽  
pp. 8771-8799 ◽  
Author(s):  
T. Dinh ◽  
A. Podglajen ◽  
A. Hertzog ◽  
B. Legras ◽  
R. Plougonven

Abstract. The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is not necessarily inconsistent with observations of low INC.


2021 ◽  
Vol 121 (4) ◽  
pp. 1207-1218
Author(s):  
Josh T. Arnold ◽  
Stephen J. Bailey ◽  
Simon G. Hodder ◽  
Naoto Fujii ◽  
Alex B. Lloyd

Abstract Purpose This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. Method Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. Result Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. Conclusion These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation.


2011 ◽  
Vol 189-193 ◽  
pp. 3891-3894
Author(s):  
Ya Min Li ◽  
Hong Jun Liu ◽  
Yuan Hao

The casting Fe3Al intermetallics were solidified in sodium silicate sand mould and permanent mould respectively to get different cooling rates. After heat treatment (1000°С/15 h homogenizing annealing + furnace cooling followed by 600°С/1 h tempering + oil quenching), the microstructure and properties of Fe3Al intermetallics were investigated. The results show that the heat-treated Fe3Al intermetallics at higher cooling rate has finer grained microstructure than lower cooling rate, and the lattice distortion increases due to the higher solid solubility of the elements Cr and B at higher cooling rate. The tensile strength and hardness of the Fe3Al intermetallics at higher cooling rate are slightly higher also. However, the impact power of intermetallics at higher cooling rate is 67.5% higher than that at lower cooling rate, and the impact fracture mode is also transformed from intercrystalline fracture at lower cooling rate to intercrystallin+transcrystalline mixed fracture at higher cooling rate.


Author(s):  
Chaoqin Zhai ◽  
David H. Archer ◽  
John C. Fischer

This paper presents the development of an equation based model to simulate the combined heat and mass transfer in the desiccant wheels. The performance model is one dimensional in the axial direction. It applies a lumped formulation in the thickness direction of the desiccant and the substrate. The boundary conditions of this problem represent the inlet outside/process and building exhaust/regeneration air conditions as well as the adiabatic condition of the two ends of the desiccant composite. The solutions of this model are iterated until the wheel reaches periodic steady state operation. The modeling results are obtained as the changes of the outside/process and building exhaust/regeneration air conditions along the wheel depth and the wheel rotation. This performance model relates the wheel’s design parameters, such as the wheel dimension, the channel size and the desiccant properties, and the wheel’s operating variables, such as the rotary speed and the regeneration air flowrate, to its operating performance. The impact of some practical issues, such as wheel purge, residual water in the desiccant and the wheel supporting structure, on the wheel performance has also been investigated.


2016 ◽  
Author(s):  
Claudia Marcolli ◽  
Baban Nagare ◽  
André Welti ◽  
Ulrike Lohmann

Abstract. AgI is one of the best investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last sixty years provide a complex picture of silver iodide as ice nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyse the factors that influence the ice nucleation ability of AgI. We have performed experiments to compare contact and immersion freezing by AgI. This is one of three papers that describe and analyse contact and immersion freezing experiments with AgI. In Nagare et al. (Nagare, B., Marcolli, C., Stetzer, O., and Lohmann, U.: Comparison of measured and calculated collision efficiencies at low temperatures, Atmos. Chem. Phys., 15, 13759–13776, doi:10.5194/acp-15-13759-2015, 2015) collision efficiencies based on contact freezing experiments with AgI are determined and compared with theoretical formulations. In a companion paper, contact freezing experiments are compared with immersion freezing experiments conducted with AgI, kaolinite, and ATD as ice nuclei. The following picture emerges from this analysis: The ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. Ice nucleation by particles with surfaces exposed to air, depends on water adsorption. AgI surfaces seem to be most efficient as ice nuclei when they are exposed to relative humidity at or even above water saturation. For AgI particles that are totally immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperature seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI•NH4I•6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence of ice nucleation in cloud chambers with short residence times.


2018 ◽  
Vol 3 ◽  
pp. 1-7
Author(s):  
Daniel Steiner ◽  
Bernhard Hofko

The cooling test or Thermal Stress Restrained Specimen Test (TSRST) simulates fully restrained pavements, as they occur in field for laboratory assessment of the thermal cracking resistance of asphalt mixtures. In the TSRST, cryogenic stress builds up due to cooling and prevented shrinkage until the tensile strength of the specimen is exceeded and the specimen fails by cracking. By carrying out TSRST various viscoelastic parameters, e.g. relaxation, evolution of tensile stresses, and tensile strength can be analyzed. Thus, a comprehensive view on the low temperature performance is possible. Standard TSRST is controlled by setting the cooling rate of the air within the chamber at a fixed value, e.g. -10°C/h. In thermodynamics, the actual cooling rate of objects is not only influenced by the cooling but also by external conditions like humidity, air velocity, radiation condition, etc. A current study investigates the impact of additional cooling parameters rather than just the air cooling rate. Two test machines of the same manufacturer that differ in the year of production and the setup of the climate chamber are compared. An initial wide scatter of test results from the two devices could be explained by taking thermodynamics into account and the reproducibility could be significantly enhanced.


2021 ◽  
Author(s):  
Kristian Klumpp ◽  
Claudia Marcolli ◽  
Thomas Peter

Abstract. Potassium-feldspars (K-feldspars), such as microcline, are considered key dust minerals inciting ice nucleation in mixed phase clouds. Besides the high ice nucleation activity of microcline, recent studies also revealed a high sensi-tivity of microcline towards interaction with solutes on its surface. Here, we investigate the effect of organic and bio-organic substances on the ice nucleation activity of microcline, with the aim to better understand the underlying sur-face interactions. We performed immersion freezing experiments with microcline in solutions of three carboxylic acids, five amino acids and two polyols to represent these compound classes. By means of a differential scanning calorimeter we investigated the freezing of emulsified droplets of microcline suspended in various solutions. Depend-ing on the type of solute, different effects were observed. In the case of carboxylic acids (acetic, oxalic and citric acid), the measured heterogeneous onset temperatures, Thet, showed no significant deviation from the behavior pre-dicted by the water activity criterion, Thet(aw) = Tmelt(aw+Δaw), which relates Thet with the melting point temperature Tmelt via a constant water activity offset Δaw. While this behavior could be interpreted as a lack of interaction of the solute molecules with the surface, the carboxylic acids caused the fraction of heterogeneously frozen water, Fhet(aw), to decrease by up to 40 % with increasing solute concentrations. In combination, unaltered Thet(aw) and reduced Fhet(aw) suggest that active sites were largely deactivated by the acid molecules, but amongst those remaining active are also the best sites with the highest Thet. A deviation from this behavior is citric acid, which showed not only a de-crease in Fhet, but also a decrease in Thet of up to 4 K for water activities below 0.99, pointing to a depletion of the best active sites by interactions with the citrate ions. When neutralized solutions of the acids were used instead, the de-crease in Fhet became even more pronounced. The slope of Thet(aw) was different for each of the neutralized acid solu-tions. In the case of amino acid solutions, we found a decrease in Thet (up to 10 K), significantly below the Δaw-criterion, as well as a reduction in Fhet (up to 60 %). Finally, in case of the investigated polyols, no significant devia-tion of Thet from the Δaw-criterion was observed, and no significant deviation of Fhet in comparison to a pure water suspension was found. Furthermore, we measured the effects of aging on the ice nucleation activity in experiments with microcline suspended in solutions for up to seven days, and tested the reversibility of the interaction with the solutes after aging for 10 days. For citric acid, an ongoing irreversible degradation of the ice nucleation activity was observed, whereas the amino acids showed completely reversible effects. In summary, our experiments demonstrate a remarkable sensitivity of microcline ice nucleation activity to surface interactions with various solutes, underscoring the importance of the history of such particles from source to frozen cloud droplet in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document