Multiphase Flow Field Trials on BP’s Magnus Platform

1987 ◽  
Vol 109 (3) ◽  
pp. 142-147
Author(s):  
T. J. Hill

The trend toward offshore oilfield development schemes which utilize relatively long, large diameter, multiphase flowlines has resulted in a need for better design techniques for such systems. In order to validate these new and improved design methods it is necessary to compare them with good quality field data obtained from a variety of different multiphase lines. Therefore trials to determine the characteristics of the multiphase flow through 150 mm NB (6 in. NB) lines from four of the satellite wells in BP’s Magnus field were carried out during October, 1985. Using two gamma ray density gages, the flow regimes, and where possible the characteristics of slug flow, were identified over a range of flowrates in the different lines. Comparison of the data is made with the predictive techniques widely used in the industry.

2021 ◽  
Vol 11 (3) ◽  
pp. 1487-1503
Author(s):  
Mariella Leporini ◽  
Alessandro Terenzi ◽  
Barbara Marchetti

AbstractThe characterization of the multiphase flow through valves and orifices is a problem yet to be solved in engineering design, and there is a need for a prediction model able to simulate the complexity of this kind of flow in relation to fluid thermodynamic behaviour, and applicable to different incoming stream conditions and compositions. The present paper describes the development of a global model for the calculation of the discharge coefficient of orifices and choke valves operating under two- and three-phase flow as well as critical and subcritical conditions. The model generalizes the hydrovalve model developed by Selmer-Olsen et al. (in: Wilson (ed) Proceedings of 7th international conference on Multiphase Production, BHR Group, pp 441–446, 1995) and the Henry–Fauske (J Heat Transfer 93: 179–187, 1971. 10.1115/1.3449782) non-equilibrium model on the basis of an updated definition of the discharge coefficient. The model has been adapted to real choke valve geometries, by fitting the discharge coefficient and model parameters using field data from three production wells. The model developed is a global quartic function with different constants for the different valve geometries. The new discharge coefficient allows to simulate field data with high accuracy.


1963 ◽  
Vol 3 (01) ◽  
pp. 59-69 ◽  
Author(s):  
George H. Fancher ◽  
Kermit E. Brown

Abstract An 8,000-ft experimental field well was utilized to conduct flowing pressure gradient tests under conditions of continuous, multiphase flow through 2 3/8-in. OD tubing. The well was equipped with 10 gas-lift valves and 10 Maihak electronic pressure recorders, as well as instruments to accurately measure the surface pressure, temperature, volume of injected gas and fluid production.These tests were conducted for flow rates ranging from 75 to 936 B/D at various gas-liquid ratios from 105 to 9,433 scf/bbl. An expanding-orifice gas-lift valve allowed each flow rate to be produced with a range of controlled gas-liquid ratios. From these data an accurate pressure traverse has been constructed for various flow rates and for various gas-liquid ratios.A comparison of these tests to Poettmann and Carp enter's correlation indicates that deviations occur for certain ranges of flow rates and gasliquid ratios. Numerous curves are presented illustrating the comparison of this correlation with the field data. Poettmann and Carpenter's correlation deviates some for low flow rates and, in particular, for gas-liquid ratios in excess of 3,000 scf/bbl. These deviations are believed to be mainly due to the friction-factor correlation. However, Poettmann and Carpenter's correlation gives excellent agreement in those ranges of higher density. This was as expected and predicted by Poettmann. He pointed out that their method was not intended to be extended to those ranges of low densities whereby an extreme reversal in curvature occurs.As a result of these experimental tests, correlations using Poettmann and Carpenter's method were established between the friction factors and mass flow rates which are applicable for all gasliquid ratios and flow rates. Definite changing flow patterns do not allow any one correlation to be accurate for all ranges of flow. Introduction The ability to analytically predict the pressure at any point in a flow string is essential in determining optimum production string dimensions and in the design of gas-lift installations. This information is also invaluable in predicting bottom-hole pressures in flowing wells.Although this problem is not new to industry, it has by no means been solved completely for all types of flow conditions. Versluys, Uren, et al, Gosline, May, and Moore, et al, were all early investigators of multiphase flow through vertical conduits. However, all of these investigations and proposed methods were very limited as to their range of application. Likewise, many are extremely complicated and therefore not very useful in the field.Only in the last decade have any significant methods been proposed which are generally applicable. The most widely accepted procedure in industry at the present time is a semi-empirical method developed from an energy balance, proposed by Poettmann and Carpenter in 1952. Their correlation is based on actual pressure measurements from field wells. Accurate predictions from this correlation are limited to high flow rates and low gas-liquid ratios.Although this method will he discussed in detail later, it should be pointed out that two important parameters, namely the gas-liquid ratio and the viscosity, were omitted in their correlation. The viscosity was justifiably omitted since their data was in the highly turbulent flow region for both phases, and most wells fall in this category. The gas-liquid ratio was incorporated to some extent in the gas-density term. In 1954, Gilbert presented numerous pressure gradient curves obtained from field data for various flow rates and gas-liquid ratios for the determination of optimum flow strings. However, no method is presented for predicting pressure gradients except by comparison to these curves. SPEJ P. 59^


Author(s):  
Zhenhua Zhang ◽  
Longbin Tao

Slug flow in horizontal pipelines and riser systems in deep sea has been proved as one of the challenging flow assurance issues. Large and fluctuating gas/liquid rates can severely reduce production and, in the worst case, shut down, depressurization or damage topside equipment, such as separator, vessels and compressors. Previous studies are primarily based on experimental investigations of fluid properties with air/water as working media in considerably scaled down model pipes, and the results cannot be simply extrapolated to full scale due to the significant difference in Reynolds number and other fluid conditions. In this paper, the focus is on utilizing practical shape of pipe, working conditions and fluid data for simulation and data analysis. The study aims to investigate the transient multiphase slug flow in subsea oil and gas production based on the field data, using numerical model developed by simulator OLGA and data analysis. As the first step, cases with field data have been modelled using OLGA and validated by comparing with the results obtained using PIPESYS in steady state analysis. Then, a numerical model to predict slugging flow characteristics under transient state in pipeline and riser system was set up using multiphase flow simulator OLGA. One of the highlights of the present study is the new transient model developed by OLGA with an added capacity of newly developed thermal model programmed with MATLAB in order to represent the large variable temperature distribution of the riser in deep water condition. The slug characteristics in pipelines and temperature distribution of riser are analyzed under the different temperature gradients along the water depth. Finally, the depressurization during a shut-down and then restart procedure considering hydrate formation checking is simulated. Furthermore, slug length, pressure drop and liquid hold up in the riser are predicted under the realistic field development scenarios.


2008 ◽  
Vol 4 (4) ◽  
pp. 307-317 ◽  
Author(s):  
Alexander Gow ◽  
Jerome Devaux

The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporating structural features that, hitherto, have not been simulated, we demonstrate that myelin tight junctions (TJs) improve saltatory conduction by reducing current flow through the myelin, limiting axonal membrane depolarization and restraining the activation of ion channels beneath the myelin sheath. Accordingly, our simulations provide a novel view of myelin by which TJs minimize charging of the membrane capacitance and lower the membrane time constant to improve the speed and accuracy of transmission in small diameter fibers. This study establishes possible mechanisms whereby TJs affect conduction in the absence of overt perturbations to myelin architecture and may in part explain the tremor and gait abnormalities observed in Claudin 11-null mice.


Author(s):  
John E. Hoel ◽  
Thomas W. Novitsky
Keyword(s):  

Geophysics ◽  
1960 ◽  
Vol 25 (4) ◽  
pp. 891-904 ◽  
Author(s):  
J. J. Pickell ◽  
J. G. Heacock

This review of density logging is primarily a compilation of information presented in the petroleum industry literature. It includes a brief discussion of some of the theory involved in gamma‐ray density logging, various calibration curves, comparisons of density‐log and core data, and comments on density‐log interpretation. Conclusions are that the density log, under good borehole conditions, provides an accurate means for measuring bulk density of the formation adjacent to the borehole. If grain density is known, valid estimates of porosity can also be made. Because of the response characteristics of the system, accuracy in determining porosity is best when formation densities are low and porosities are high.


Sign in / Sign up

Export Citation Format

Share Document