Calculation of Three-Dimensional, Inviscid, Rotational Flow in Axial Turbine Blade Rows

1984 ◽  
Vol 106 (2) ◽  
pp. 430-436 ◽  
Author(s):  
W. Van Hove

This paper describes a fully explicit, time marching, corrected viscosity, finite volume method to solve the Euler equations in a cylindrical coordinate system. The rotational character of the incoming flow can be taken into account. On the outflow boundary, a generalized radial equilibrium condition is imposed. Blade rows of complex geometry can be handled. At present, the method has been used to calculate the flow through the nozzle vanes of the VKI low-speed turbine facility. The calculated results show good agreement with the experimental data for the spatial distribution of both the static pressure and the flow angle.

2011 ◽  
Vol 312-315 ◽  
pp. 971-976 ◽  
Author(s):  
J. Barbosa da Silva ◽  
G. Silva Almeida ◽  
W.C.P. Barbosa de Lima ◽  
Gelmires Araújo Neves ◽  
Antônio Gilson Barbosa de Lima

The Aim of this Work Is to Present a Three-Dimensional Mathematical Modelling to Predict Heat and Mass Transport inside the Industrial Brick with Rectangular Holes during the Drying Including Shrinkage and Hygrothermalelastic Stress Analysis. the Numerical Solution of the Diffusion Equation, Being Used the Finite-Volume Method, Considering Constant Thermo-Physical Properties and Convective Boundary Conditions at the Surface of the Solid, it Is Presented and Analyzed. Results of the Temperature, Moisture Content and Stress Distributions, and Drying and Heating Kinetics Are Shown and Analyzed. Results of the Average Moisture Content and Surface Temperature of the Brick along the Drying Process Are Compared with Experimental Data (T = 80.0oC and RH = 4.6 %) and Good Agreement Was Obtained. it Was Verified that the Largest Temperature, Moisture Content and Stress Gradients Are Located in the Intern and External Vertexes of the Brick.


Author(s):  
Akitomo Igarashi ◽  
Kazuyuki Toda ◽  
Makoto Yamamoto ◽  
Toshimichi Sakai

The performance of centrifugal fans is considerably influenced by the design of tongue at the re-circulation port. The flow in the volute of a centrifugal fan was studied both experimentally and numerically. In this experiment, flow angle, pressure and velocity profiles were measured at a large number of locations in the volute. The flow field in the volute passage was analyzed using Computational Fluid Dynamics. The flow was assumed to be three dimensional, turbulent and steady. The numerical simulation produced qualitatively good agreement with the experimental result. The results from experiment and numerical simulation indicated that the adoption of a re-circulating flow port improved fan performance for all flow conditions. In addition, the existence of strong secondary flow was apparent at the cross-section of the volute passage.


Author(s):  
Muhammad Naqib Nashrudin ◽  
Mohamad Aizat Abas ◽  
Mohd Z. Abdullah ◽  
M. Yusuf Tura Ali ◽  
Zambri Samsudin

Abstract The conventional capillary underfill process has been a common practice in the industry, somehow the process is costly and time consuming. Thus, no-flow underfill process is developed to increase the effective lead time production since it integrates the simultaneous reflow and cure of the solder interconnect and underfill. This paper investigates the effect of different dispense patterns of no-flow underfill process by mean of numerical and experimental method. Finite volume method (FVM) was used for the three-dimensional simulation to simulate the compression flow of the no-flow underfill. Experiments were carried out to complement the simulation validity and the results from both studies have reached a good agreement. The findings show that of all three types of dispense patterns, the combined shape dispense pattern shows better chip filling capability. The dot pattern has the highest velocity and pressure distribution with values of 0.0172 m/s and 813 Pa, respectively. The high-pressure region is concentrated at the center of the chip and decreases out towards the edge. Low in pressure and velocity flow factor somehow lead to issue associated to possibility of incomplete filling or void formation. Dot dispense pattern shows less void formation since it produces high pressure underfill flow within the BGA. This paper provides reliable insight to the industry to choose the best dispense pattern of recently favorable no-flow underfill process.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


2010 ◽  
Vol 652 ◽  
pp. 405-426 ◽  
Author(s):  
MATTHIAS HEIL ◽  
JONATHAN BOYLE

We employ numerical simulations to explore the development of flow-induced self-excited oscillations in three-dimensional collapsible tubes which are subject to boundary conditions (flow rate prescribed at the outflow boundary) that encourage the development of high-frequency oscillations via an instability mechanism originally proposed by Jensen & Heil (J. Fluid Mech., vol. 481, 2003, p. 235). The simulations show that self-excited oscillations tend to arise preferentially from steady equilibrium configurations in which the tube is buckled non-axisymmetrically. We follow the growing oscillations into the large-amplitude regime and show that short tubes tend to approach an approximately axisymmetric equilibrium configuration in which the oscillations decay, whereas sufficiently long tubes develop sustained large-amplitude limit-cycle oscillations. The period of the oscillations and the critical Reynolds number beyond which their amplitude grows are found to be in good agreement with theoretical scaling estimates.


Author(s):  
S-J Seo ◽  
K-Y Kim ◽  
S-H Kang

A numerical study is presented for Reynolds-averaged Navier-Stokes analysis of three-dimensional turbulent flows in a multiblade centrifugal fan. Present work aims at development of a relatively simple analysis method for these complex flows. A mathematical model of impeller forces is obtained from the integral analysis of the flow through the impeller. A finite volume method for discretization of governing equations and a standard k-ɛ model as turbulence closure are employed. For the validation of the mathematical model, the computational results for velocity components, static pressure, and flow angles at the exit of the impeller were compared with experimental data. The comparisons show generally good agreement, especially at higher flow coefficients.


Author(s):  
Krishnan V. Pagalthivarthi ◽  
John M. Furlan ◽  
Robert J. Visintainer

Flow through centrifugal pump casing is highly complex in nature due to the complex geometry of the casing. While simplified two dimensional modeling of pump casing reveals the overall flow pattern and pressure distribution, a complete 3D model of pump casing is essential to fully capture the interaction of the primary main stream flow and the secondary flows especially in areas of heavy recirculation. This paper presents steady state finite element simulation of multi-size particulate slurry flow through three dimensional pump casing. The flow field and concentration distribution is presented for different cross-sectional planes. The multi-size particulate flow simulation results are compared with two mono-size particle simulations using (1) the concentration weighted mean diameter of the slurry and (b) the D50 size of the slurry. Qualitative comparison is made with the wear rate predicted by the simulations and the field data. Simulations and field data show that at low flow rates, the side-wall gouging wear near the tongue region becomes significant.


Author(s):  
Pieter Groth ◽  
Hans Mårtensson ◽  
Lars-Erik Eriksson

A finite volume method for blade flutter analyses, using moving grids is presented and partly validated. The method which solves the unsteady three-dimensional Euler equations is formulated in the four-dimensional time-space domain. An algebraic grid generation technique based on transfinite interpolation is used to move and deform the grid to conform to the blade motion. Fluxes are calculated using a third-order upwind-biased scheme. For time marching both an explicit three-stage Runge-Kutta scheme and a Crank-Nicolson scheme is used. Internal and external flows are calculated using the present method. Calculated results agree well with the corresponding experiments and with results obtained using other methods.


Author(s):  
E. Farsad ◽  
S. P. Abbasi ◽  
M. S. Zabihi

Performance of microchannel heatsink (MCHS) partially filled with foam is investigated numerically. The open cell copper foams have the porosity and pore density in the ranges of 60–90% and 60–100 PPI (pore per inch), respectively. The three-dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method. The performance of microchannel heatsink is evaluated in terms of overall thermal resistance, pressure drop, and heat transfer coefficient and temperature distribution. It is found that the results of the surface temperature profile are in good agreement with numerical data. The results show the microchannel heatsink with insert foam appears to be good candidates as the next generation of cooling devices for high power electronic devices. The thermal resistance for all cases decreases with the decrease in porosity. The uniformity of temperature in this heatsink is enhanced compared the heatsink with no foam. The thermal resistance versus the pumping power is depicted, it is found that 80% is the optimal porosity for the foam at 60 PPI with a minimum thermal resistance 0.346 K/W. The results demonstrate the microchannel heatsink partially filled with foam is capable for removing heat generation 100 watt over an area of 9 × 10−6 m2 with the temperature of heat flux surface up to 59 °C.


1984 ◽  
Author(s):  
U. K. Singh

An inviscid-viscous interaction treatment has been developed to predict the flow through transonic axial turbine blade cascades. The treatment includes a trailing-edge base pressure model. This model is based on treating the area between the points of flow separation on the blade surfaces at the trailing-edge and the point of downstream confluence of the suction and pressure surface flows as a region of constant pressure. A time marching technique is used to calculate the inviscid flow and viscous flow is calculated by integral methods for laminar and turbulent boundary layers. Good agreement with experimental data has been obtained.


Sign in / Sign up

Export Citation Format

Share Document