The Effect of Thermal Matching on the Thermodynamic Performance of Gas Turbine and IC Engine Cogeneration Systems

1987 ◽  
Vol 109 (1) ◽  
pp. 39-45 ◽  
Author(s):  
J. W. Baughn ◽  
N. Bagheri

Computer models have been used to analyze the thermodynamic performance of a gas turbine (GT) cogeneration system and an internal combustion engine (IC) cogeneration system. The purpose of this study was to determine the effect of thermal matching of the load (i.e., required thermal energy) and the output steam fraction (fraction of the thermal output, steam and hot water, which is steam) on the thermodynamic performance of typical cogeneration systems at both full and partial output. The thermodynamic parameters considered were: the net heat rate (NHR), the power-to-heat ratio (PHR), and the fuel savings rate (FSR). With direct use (the steam fractions being different), the NHR of these two systems is similar at full output, the NHR of the IC systems is lower at partial output, and the PHR and the FSR of the GT systems are lower than those of the IC systems over the full range of operating conditions. With thermal matching (to produce a given steam fraction) the most favorable NHR, PHR, and FSR depend on the method of matching the load to the thermal output.

Author(s):  
J. W. Baughn ◽  
N. Bagheri

Computer models have been used to analyze the thermodynamic performance of a gas turbine (GT) cogeneration system and an internal combustion engine (IC) cogeneration system. The purpose of this study was to determine the effect of thermal matching of the load (i.e., required thermal energy) and the output steam fraction (fraction of the thermal output, steam and hot water, which is steam) on the thermodynamic performance of typical cogeneration systems at both full and partial output. The thermodynamic parameters considered were; the net heat rate (NHR), the power to heat ratio (PHR), and the fuel savings rate (FSR). With direct use (the steam fractions being different); the NHR of these two systems is similar at full output, the NHR of the IC systems is lower at partial output, and the PHR and the FSR of the GT systems is lower than the IC systems over the full range of operating conditions. With thermal matching (to produce a given steam fraction) the most favorable NHR, PHR, and FSR depends on the method of matching the load to the thermal output.


1987 ◽  
Vol 109 (1) ◽  
pp. 32-38 ◽  
Author(s):  
J. W. Baughn ◽  
R. A. Kerwin

The thermodynamic performance of a gas turbine cogeneration system is predicted using a computer model. The predicted performance is compared to the actual performance, determined by measurements, in terms of various thermodynamic performance parameters which are defined and discussed in this paper. These parameters include the electric power output, fuel flow rate, steam production, electrical efficiency, steam efficiency, and total plant efficiency. Other derived parameters are the net heat rate, the power-to-heat ratio, and the fuel savings rate. This paper describes the cogeneration plant, the computer model, and the measurement techniques used to determine each of the necessary measurands. The predicted and the measured electric power compare well. The predicted fuel flow and steam production are less than measured. The results demonstrate that this type of comparison is needed if computer models are to be used successfully in the design and selection of cogeneration systems.


2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


Author(s):  
Maurizio De Lucia ◽  
Carlo Lanfranchi ◽  
Antonio Matucci

A cogeneration plant with a small gas turbine was installed in a pharmaceutical factory and instrumented for acquiring all the values necessary to appraise both its energetic and cost advantages. The plant was designed and built as a demonstrative project under a program for energy use improvement in industry, partially financed by the European Union. The system comprises as its main components: 1) a gas turbine cogeneration plant for production of power and thermal energy under the form of hot water, superheated water, and steam; 2) a two-stage absorption unit, fueled by the steam produced in the cogeneration plant, for production of cooling thermal energy. The plant was provided with an automatized control system for the acquisition of plant operating parameters. The large amount of data thus provided made it possible to compare the new plant, under actual operating conditions, with the previously existing cooling power station with compression units, and with a traditional power plant. This comparative analysis was based on measurements of the plant operating parameters over nine months, and made it possible to compare actual plant performance with that expected and ISO values. The analysis results reveal that gas turbine performance is greatly affected by part-load as well as ambient temperature conditions. Two-stage absorber performance, moreover, turned out to decrease sharply and more than expected in off-design operating conditions.


1993 ◽  
Vol 115 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Numerical simulation of flow, combustion, heat release rate, and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data show that for good agreement with experimental results on the peak pressure and the rate of pressure rise as a function of crank angle, spark ignition energy and local cylinder pressure must be properly modeled. The results obtained for NO and CO showed features which are qualitatively in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multicomponent chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants generate a significant portion of world’s electricity. This paper presents the modeling of a gas turbine-based cogeneration cycle. One of the reasons for the relatively low efficiency of a single gas turbine cycle is the waste of high-grade energy at its exhaust stream. In order to recover this wasted energy, steam and/or hot water can be cogenerated to improve the cycle efficiency. In this work, a cogeneration power plant is introduced to use this wasted energy to produce superheated steam for industrial processes. The cogeneration system model was developed based on the data from the Whitby cogeneration power plant in ASPEN PLUS®. The model was validated against the operational data of the existing power plant. The electrical and total (both electrical and thermal) efficiencies were around 40% and 70% (LHV), respectively. It is shown that cogenerating electricity and steam not only significantly improve the general efficiency of the cycle but it can also recover the output and efficiency losses of the gas turbine as a result of high ambient temperature by generating more superheated steam. Furthermore, this work shows that the model could capture the operation of the systems with an acceptable accuracy.


Author(s):  
Thomas Holzschuh ◽  
Miroslav Kovacik

In 1996, Cogeneration-Kraftwerke Management Steiermark (CMST), OMV Cogeneration, together with local partners, built a 25Mwel gas turbine plant with a hot water boiler for thermal energy to be used by a car manufacturer and the municipality Graz, Austria. The plant is driven by a FT8-30 (JT8D-219) Pratt & Whitney (P&W) jet engine, accumulating 8200 operating hours per annum. This paper outlines the technical experience and related problems with the existing equipment in the light of variable operating conditions and the investments for efficiency augmentation of the gas turbine trains. A joint-venture between Cogeneration Kraftwerke Management Obero¨sterreich GmbH (CMOO¨) and OMV Cogeneration GmbH as well as Energie AG. CMOO¨ has operated the Combined Heat Power CHP Plant (50 MW el) in the paper mill SCA GRAPHIC LAAKIRCHEN based on contracting since 1994. Because of a extension of the paper mill the energy supply had to be increased. So the delivery of two steam boilers with each 30 t steam per hour and water treatment took place in August 2001. The plant-extension will operate as an independent unit and will guarantee the full availability of the energy supply. Commercial operation will start in January 2002.


Author(s):  
Harry Bonilla-Alvarado ◽  
Bernardo Restrepo ◽  
Paolo Pezzini ◽  
Lawrence Shadle ◽  
David Tucker ◽  
...  

Abstract Proportional integral and derivative (PID) controllers are the most popular technique used in the power plant industry for process automation. However, the performance of these controllers may be affected due to variations in the power plant operating conditions, such as between startup, shutdown, and baseload/part-load operation. To maintain the desired performance over the full range of operations, PID controllers are always retuned in most power plants. During this retuning process, the operator takes control of the manipulated variable to perform a standard procedure based on a bump test. This procedure is generally performed to characterize the relationship between the manipulated variable and the process variable at each operating condition. After the bump test, the operator generally applies basic guidelines to assign new parameters to the PID controller. In this paper, the Model Reference Adaptive Controller (MRAC) control technique was implemented to update the PID controller parameters online without performing the bump test procedure. This approach allows updating the controller response on-the-fly while the power plant is running and without using the standard procedure based on a bump test. The MRAC was developed and demonstrated in the gas turbine hybrid cycle at the National Energy Technology Laboratory (NETL) to retune a critically damped mass flow PID controller into an over-damped response. Results showed stable performance during mass flow setpoint steps and also a stable update of the controller parameters.


Author(s):  
Joseph Rabovitser ◽  
Serguei Nester ◽  
Stan Wohadlo ◽  
Kenneth Smith ◽  
Waseem Nazeer ◽  
...  

Gas Technology Institute (GTI) has been advancing the POGT concept since 1995. The progress to date of a GTI-led team on the development and testing of a POGT prototype, and POGT-based systems are presented. There are two main features that distinguish a POGT from a conventional gas turbine: the design arrangement and the thermodynamic processes used in operation. One unique feature is utilization of a non-catalytic partial oxidation reactor (POR) in place of a typical combustor. An important secondary distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From a thermodynamic point of view, the working fluid provided by the POR (a secondary fuel gas) has much higher specific heat than complete combustion products. This allows higher energy per unit mass of fluid to be extracted by the POGT expander than is the conventional case. A POR operates at fuel rich conditions, typically at equivalence ratios on the order of 2.5, and virtually any hydrocarbon fuel can be combusted. Because of these fuel rich conditions, incomplete combustion products are used as the hot section working fluid. A POGT thus produces two products: power and a secondary fuel that usually is a H2 rich gas. This characteristic can lead to high efficiencies and ultra-low emissions (single digit NOx and CO levels) when the secondary fuel is burned cleanly in a bottoming cycle. When compared to the equivalent standard gas turbine bottoming cycle combination, the POGT provides an increase of about 10 percentage points in overall system efficiency. Two areas of recent development are addressed in the paper: POGT development and experimental evaluation of a 7 MWth pressurized non-catalytic POR installed at GTI; and examples of POGT-based systems for combined generation of power, heat, syngas, hydrogen, etc. The POGT design approach to convert an existing engine into a POGT by replacing its combustor with a POR together with concomitant modifications of other engine components is discussed. Experimental results of the POR operation include descriptions of major operating conditions: start up, light off conditions, lean combustion mode, lean-to-rich transition, and operation in rich partial oxidation mode at different loads and air to fuel ratios. The overall efficiency of a POGT two-stage power system is typically high and can approach 70% depending on the POGT operating conditions and the chosen bottoming cycle. The bottoming-cycle can be either a low pressure (or vacuum) combustion turbine, or an internal combustion engine, or a solid oxide fuel cell, or any combination of them. In addition, the POGT can be used as the driver for cogeneration systems. In such cogeneration systems the bottoming cycle can be a fuel-fired boiler, an absorption chiller, or an industrial furnace. The POGT is ideally suited for the co-production of power and either hydrogen, or synthesis gas (syngas), or chemicals. Some of these important applications are discussed.


Author(s):  
Flore Marion ◽  
Fred Betz ◽  
David Archer

A 25 kWe cogeneration system has been installed by the School of Architecture of Carnegie Mellon University that provides steam and hot water to its Intelligent Workplace, the IW. This cogeneration system comprises a biodiesel fueled engine generator, a steam generator that operates on its exhaust, a hot water heat exchanger that operates on its engine coolant, and a steam driven absorption chiller. The steam and hot water are thus used for cooling, heating, and ventilation air dehumidification in the IW. This cogeneration system is a primary component of an overall energy supply system that halves the consumption of primary energy required to operate the IW. This cogeneration system was completed in September 2007, and extensive tests have been carried out on its performance over a broad range of power and heat outputs with Diesel and biodiesel fuels. In parallel, a detailed systems performance model of the engine generator, its heat recovery exchangers, the steam driven absorption chiller, a ventilation and air dehumidification unit, and multiple fan coil cooling/heating units has been programmed making use of TRNSYS to evaluate the utilization of the heat from the unit in the IW. In this model the distribution of heat from the engine to the exhaust, to the coolant, and directly to the surroundings has been based on an ASHRAE model. While a computational model was created, its complexity made calculation of annual performance excessively time consuming and a simplified model based on experimental data was created. The testing of the cogeneration system at 6, 12, 18 and 25 kWe is now completed and a wealth of data on flow rates, temperatures, pressures throughout the system were collected. These data have been organized in look up tables to create a simplified empirical TRNSYS component for the cogeneration system in order to allow representative evaluation of annual performance of the system for three different mode of operation. Using the look up table, a simple TRNSYS module for the cogeneration system was developed that equates fuel flow to electricity generation, hot water generation via the coolant heat exchanger, and steam production via the steam generator. The different modes of operation for this cogeneration system can be design load: 25 kWe, following the thermal — heating or cooling — load, following the ventilation regeneration load. The calculated annual efficiency for the different mode is respectively 66% 68% and 65%. This cogeneration installation was sized to provide guidance on future cogeneration plant design for small commercial buildings. The new cogeneration TRNSYS component has been created to be applicable in the design of various buildings where a similar cogeneration system could be implemented. It will assist in selection of equipment and of operating conditions to realize an efficient and economic cogeneration system.


Sign in / Sign up

Export Citation Format

Share Document