Ethers and esters as alternative fuels for internal combustion engine: A review

2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.

Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


1993 ◽  
Vol 115 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Numerical simulation of flow, combustion, heat release rate, and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data show that for good agreement with experimental results on the peak pressure and the rate of pressure rise as a function of crank angle, spark ignition energy and local cylinder pressure must be properly modeled. The results obtained for NO and CO showed features which are qualitatively in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multicomponent chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2019 ◽  
Vol 178 (3) ◽  
pp. 27-37 ◽  
Author(s):  
Denys STEPANENKO ◽  
Zbigniew KNEBA

The mathematical description of combustion process in the internal combustion engines is a very difficult task, due to the variety of phenomena that occurring in the engine from the moment when the fuel-air mixture ignites up to the moment when intake and exhaust valves beginning open. Modeling of the combustion process plays an important role in the engine simulation, which allows to predict in-cylinder pressure during the combustion, engine performance and environmental impact with high accuracy. The toxic emissions, which appears as a result of fuels combustion, are one of the main environmental problem and as a result the air pollutant regulations are increasingly stringent, what makes the investigation of the combustion process to be a relevant task.


Author(s):  
Mohd Fitri Arshad ◽  
◽  
Muhammad Faris Ahmad ◽  
Amir Khalid ◽  
Izuan Amin Ishak ◽  
...  

In an internal combustion engine, performance, efficiency and emission formation depends on the formation of air-fuel mixture inside the engine cylinder. The fluid flow dynamics plays an important role for air-fuel mixture preparation to obtain the better engine combustion, performance and efficiency. This review article discuss the rotating flow (swirl and tumble) in premixed spark-ignition engine and its effect on turbulence generation and flame propagation. Rotating flow can substantially increase turbulence intensity for the duration of the combustion period. This review paper discusses the in-cylinder swirl and tumble flow that affects air induction during the combustion process in internal combustion engine. Alternatively, this study using computer simulation (Computational Fluid Dynamic, CFD) which offer the opportunity to carry out repetitive parameter studies. An integration-type flowmeter (IFM) also has been used which consists of ultrasonic flowmeter, that integrates the flowrate during the intake process, gives accurate measurements regardless of sampling time and frequency. Research parameter in this study was swirl and tumble that represents the fluid flow behavior occurred inside combustion chamber. Fuel injection and air mass also were the important parameters that have been discussed about in air induction process. The results obtain from the numerical analysis can be employed to examine the homogeneity of air-fuel mixture structure for better combustion process and engine performance.


Author(s):  
Stephen A. Ciatti ◽  
Thomas Wallner ◽  
Henry Ng ◽  
William F. Stockhausen ◽  
Brad Boyer

Although hydrogen is considered one of the most promising future energy carriers, there are several challenges to achieving a “hydrogen economy,” including finding a practical, efficient, cost-effective end-use device. Using hydrogen as a fuel for internal combustion engines is seen as a bridging technology toward a large-scale hydrogen infrastructure. To facilitate high-efficiency, high-power-density use of hydrogen with near-zero emissions in an internal combustion engine, detailed analysis of the hydrogen combustion process is necessary. This paper presents thermodynamic results regarding engine performance and emissions behavior during investigations performed on a single-cylinder research engine fueled by pressurized gaseous hydrogen. Avoiding combustion anomalies is one of the necessary steps to further improve the hydrogen engine power output at high-load operation while, at the same time, reducing fuel consumption and emissions during part-load operation. The overall target of the investigations is an improved combustion concept especially designed for hydrogen-engine-powered vehicles. Future activities include performing optical imaging of hydrogen combustion by using an endoscope. We will also investigate supercharged external mixture formation, as well as hydrogen direct-injection operation.


Author(s):  
Arash Mohammadi ◽  
Ali Jazayeri ◽  
Masoud Ziabasharhagh

Porous media (PM) has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power range, the extension of the lean flammability limits, and the low emissions of pollutants. Future internal combustion (IC) engines should have had minimum emissions level, under possible lowest fuel consumption permitted at all operational conditions. This may be achieved by realization of homogeneous combustion process in engine. In this paper, possibility of using PM in direct injection IC engine, with cylindrical geometry for PM to have homogeneous combustion, is examined. A three-dimensional numerical model for the regenerative engine is presented in this study based on a modified version of the KIVA-3V code that is very popular for engine simulation. Methane as a fuel is injected directly inside hot PM that is assumed mounted in cylinder head. Very lean mixture is formed and volumetric combustion occurs in PM. Mixture formation, pressure, temperature distribution in both phases of PM and in-cylinder fluid with the production of pollutants CO and NO, in the closed part of the cycle is studied.


Author(s):  
Abazar Shamekhi ◽  
Nima Khatibzadeh ◽  
Amir H. Shamekhi

Nowadays, increased attention has been focused on internal combustion engine fuels. Regarding environmental effects of internal combustion engines particularly as pollutant sources and depletion of fossil fuel resources, compressed natural gas (CNG) has been introduced as an effective alternative to gasoline and diesel fuel in many applications. A high research octane number allows combustion at higher compression ratios without knocking and good emission characteristics of HC and CO are major benefits of CNG as an engine fuel. In this paper, CNG as an alternative fuel in a spark ignition engine has been considered. Engine performance and exhaust emissions have been experimentally studied for CNG and gasoline in a wide range of the engine operating conditions.


Author(s):  
Rao V. Arimilli ◽  
Kurt Erickson ◽  
Frederick T. Mottley ◽  
James C. Conklin

A revolutionary new concept internal-combustion engine called TurbX™ was invented and a prototype was built by an independent inventor, M. A. Wilson. Theoretically, the TurbX™ engine cycle can be represented by the Atkinson thermodynamic cycle with a continuous combustion process. Because of these attributes, this concept has the potential for higher fuel economy and power density relative to other internal combustion engine types. To evaluate the performance of this prototype, Oak Ridge National Laboratory and The University of Tennessee conducted an independent experimental study. Two series of tests were performed: cold-flow and fuel-fired tests. Cold-flow, compressed-air driven, tests were performed by pressurizing the combustion chamber with shop air to demonstrate the prototype performance of the turbine section. These results showed positive but unremarkable torque for combustion chamber air pressures above 300 kPa with a functional relationship illustrative of typical gas turbines with respect to shaft speed. The fuel-fired tests consisted of 26 constant-speed runs between 1800 and 9500 RPM. The experimental apparatus limited the maximum test speed to 9500 RPM. The TurbX™ engine produced no net output power for all fuel-fired tests conducted. The temperature measurements indicated that for most of the runs there was sustained combustion. However, even in runs where satisfactory combustion was observed, measured gage pressure inside the combustion chamber never exceeded 15.5 kPa. The lack of sufficient pressure rise inside the combustion chamber is indicative of excessive leakage of the combustion products through the preliminary prototype engine internals. Based on the results and the experience gained through this independent testing of this preliminary prototype, further development of this concept is recommended. Three major issues are specifically identified: 1) the internal components must be redesigned to reduce leakage, 2) combustion chamber design and 3) improve the overall aerodynamic performance of the engine internal components.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1420 ◽  
Author(s):  
Michele Becciani ◽  
Luca Romani ◽  
Giovanni Vichi ◽  
Alessandro Bianchini ◽  
Go Asai ◽  
...  

In order to ensure a high level of performance and to comply with the increasingly severe limitations in terms of fuel consumption and pollution emissions, modern diesel engines need continuous monitoring of their operating conditions by their control units. With particular focus on turbocharged engines, which are presently the standard in a large number of applications, the use of the average and the instantaneous turbocharger speeds is thought to represent a valuable feedback of the engine behavior, especially for the identification of the cylinder-to-cylinder injection variations. The correct operation of the injectors and control of the injected fuel quantity allow the controller to ensure the right combustion process and maintain engine performance. In the present study, two different techniques are presented to fit this scope. The techniques are discussed and experimentally validated, leading to the definition of an integrated control strategy, which features the main benefits of the two, and is able to correctly detect the cylinder-to-cylinder injection variation and, consequently, properly correct the injection in each cylinder in order to balance the engine behavior. In addition, the possibility of detecting misfiring events was assessed.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2127 ◽  
Author(s):  
Junhong Zhang ◽  
Zhexuan Xu ◽  
Jiewei Lin ◽  
Zefeng Lin ◽  
Jingchao Wang ◽  
...  

The engine cooling system must be able to match up with the stable operating conditions so as to guarantee the engine performance. On the working cycle level, however, the dynamic thermo-state of engines has not been considered in the cooling strategy. Besides, the frequent over-cooling boiling inside the gallery changes the cooling capacity constantly. It is necessary to study the coupling effect caused by the interaction of cooling flow and in-cylinder combustion so as to provide details of the dynamic control of cooling systems. To this end, this study develops a coupled modeling scheme of the cooling process considering the interaction of combustion and coolant flow. The global reaction mechanism is used for the combustion process and the multiphase flow method is employed to simulate the coolant flow considering the wall boiling and the interphase forces. The two sub-models exchange information of in-cylinder temperature, heat transfer coefficient, and wall temperature to achieve the coupled computation. The proposed modeling process is verified through the measured diesel engine power, in-cylinder pressure, and fire surface temperature of cylinder head. Then the effects of different cooling conditions on the cyclic engine performances are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document