Operation of a Caterpillar 3516 Spark-Ignited Engine on Low-Btu Fuel

1987 ◽  
Vol 109 (4) ◽  
pp. 443-447 ◽  
Author(s):  
N. C. Macari ◽  
R. D. Richardson

The use of an engine-generator package, fueled by landfill gas, to produce usable electrical power has generated considerable interest among both landfill operators and engine manufacturers. Landfill gas operation presents some unusual technical challenges that require preparation of the gas prior to engine consumption as well as modifications to the spark-ignited engine. The primary obstacles to landfill gas operation are the low-Btu content of the gas, its poor combustion characteristics, and fluctuations in the heating value of the gas. Even so, the engine was not derated from the standard natural gas generator set rating of 762 kW net electrical output. In addition, the engine performance was optimized to meet the EPA site laws for stationary gas engines while still maintaining very low brake specific fuel consumption (BSFC). Finally, 90 days of continuous operation demonstrated engine durability.

Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
Derek Johnson ◽  
Marc Besch ◽  
Nathaniel Fowler ◽  
Robert Heltzel ◽  
April Covington

Emissions compliance is a driving factor for internal combustion engine research pertaining to both new and old technologies. New standards and compliance requirements for off-road spark ignited engines are currently under review and include greenhouse gases. To continue operation of legacy natural gas engines, research is required to increase or maintain engine efficiency, while reducing emissions of carbon monoxide, oxides of nitrogen, and volatile organic compounds such as formaldehyde. A variety of technologies can be found on legacy, large-bore natural gas engines that allow them to meet current emissions standards — these include exhaust after-treatment, advanced ignition technologies, and fuel delivery methods. The natural gas industry uses a variety of spark plugs and tuning methods to improve engine performance or decrease emissions of existing engines. The focus of this study was to examine the effects of various spark plug configurations along with spark timing to examine any potential benefits. Spark plugs with varied electrode diameter, number of ground electrodes, and heat ranges were evaluated against efficiency and exhaust emissions. Combustion analyses were also conducted to examine peak firing pressure, location of peak firing pressure, and indicated mean effective pressure. The test platform was an AJAX-E42 engine. The engine has a bore and stroke of 0.216 × 0.254 meters (m), respectively. The engine displacement was 9.29 liters (L) with a compression ratio of 6:1. The engine was modified to include electronic spark plug timing capabilities along with a mass flow controller to ensure accurate fuel delivery. Each spark plug configuration was examined at ignition timings of 17, 14, 11, 8, and 5 crank angle degrees before top dead center. The various configurations were examined to identify optimal conditions for each plug comparing trade-offs among brake specific fuel consumption, oxides of nitrogen, methane, formaldehyde, and combustion stability.


Author(s):  
Jiantong Song ◽  
Chunhua Zhang ◽  
Guoqing Lin ◽  
Quanchang Zhang

In order to reduce the fuel consumption and hydrocarbon and CO emissions of liquefied natural gas-diesel dual-fuel engines under light loads, an optimization control scheme, in which the dual-fuel engine runs in original diesel mode under light loads, is used in this paper. The performance and exhaust emissions of the dual-fuel engine and the original diesel engine are compared and analyzed by bench tests of an electronic control common-rail diesel engine. Experimental results show that the brake-specific fuel consumption and hydrocarbon and CO emissions of the liquefied natural gas-diesel dual-fuel engine are not deteriorated under light loads. Compared with diesel, the brake power and torque of dual-fuel remain unchanged, the brake-specific fuel consumption decreases, and the smoke density and CO2 emissions of dual-fuel decrease, while the hydrocarbon and CO emissions increase, and there is no significant difference in NOx emissions.


2020 ◽  
pp. 146808742094590
Author(s):  
Homayoun Boodaghi ◽  
Mir Majid Etghani ◽  
Korosh Sedighi

Today, the demand for higher output efficiencies, lower fuel consumption, and ever reduced emissions has been rising. Due to its availability, one promising alternative is the applying of hydrogen in internal combustion engines. In this study, the initial efforts concentrated on combine relationships of input and output parameters of hydrogen compressed natural gas spark-ignition engine. The quadratic regression models were conducted for all six responses: torque, carbon monoxide, brake-specific fuel consumption, methane, nitrogen oxides, and total hydrocarbon through response surface methodology and tested for adequacy by analysis of variance. The multi-objective desirability approach employed for the optimization of input variables, namely, the hydrogen compressed natural gas ratio, excess air ratio ( λ), and ignition timing ( θi). Also, two factors, that is, manifold absolute pressure and engine speed, were fixed at 105 kPa and 1600 r/min, respectively. Results indicate that the optimal independent input factors are equal to λ of 1.178, hydrogen compressed natural gas ratio of 25.98%, and θi of 18 °CA before top dead center. Also, the optimal combination of responses is as follows: brake-specific fuel consumption of 219.334 g/kWh, the torque of 395 N m, 30.189 g/kWh for nitrogen oxides, carbon monoxide equal to 5.093 g/kWh, total hydrocarbon of 0.633 g/kWh, and 0.572 g/kWh for methane. This study provided the significance of response surface methodology as an attractive technique for investigators for modeling. In this regard, the response surface methodology modeling and multi-objective desirability approach can be utilized to predict the emission and performance characteristics of the hydrogen compressed natural gas engines minutely.


Author(s):  
Michael Flory ◽  
Joel Hiltner ◽  
Clay Hardenburger

Pipeline natural gas composition is monitored and controlled in order to deliver high quality, relatively consistent gas quality in terms of heating value and detonation characteristics to end users. The consistency of this fuel means gas-fired engines designed for electrical power generation (EPG) applications can be highly optimized. As new sources of high quality natural gas are found, the demand for these engines is growing. At the same time there is also an increasing need for EPG engines that can handle fuels that have wide swings in composition over a relatively short period of time. The application presented in this paper is an engine paired with an anaerobic digester that accepts an unpredictable and varying feedstock. As is typical in biogas applications, there are exhaust stream contaminants that preclude the use of an oxygen or NOx sensor for emissions feedback control. The difficulty with such a scenario is the ability to hold a given exhaust gas emission level as the fuel composition varies. One challenge is the design of the combustion system hardware. This design effort includes the proper selection of compression ratio, valve events, ignition timing, turbomachinery, etc. Often times simulation tools, such as a crank-angle resolved engine model, are used in the development of such systems in order to predict performance and reduce development time and hardware testing. The second challenge is the control system and how to implement a robust control capable of optimizing engine performance while maintaining emissions compliance. Currently there are limited options for an OEM control system capable of dealing with fuels that have wide swings in composition. Often times the solution for the engine packager is to adopt an aftermarket control system and apply this in place of the control system delivered on the engine. The disadvantage to this approach is that the aftermarket controller is not calibrated and so the packager is faced with the task of developing an entire engine calibration at a customer site. The controller must function well enough that it will run reliably during plant start-up and then eventually prove capable of holding emissions under typical operating conditions. This paper will describe the novel use of a crank-angle resolved four-stroke engine cycle model to develop an initial set of calibration values for an aftermarket control system. The paper will describe the plant operation, implementation of the aftermarket controller, the model-based calibration methodology and the commissioning of the engine.


2010 ◽  
pp. 42-49 ◽  
Author(s):  
Md Ehsan

Petrol engines can run on natural gas, with little modification. The combustion characteristics of naturalgas is different from that of petrol, which eventually affects the engine performance. The performance of atypical automotive engine was studied running on natural gas, firstly at a constant speed for various loadsand then at a constant load for a range of speeds and results were compared with performance using petrol.Variation of the spark advance, consisting of centrifugal and vacuum advance mechanisms, wasinvestigated. Results showed some reduction in power and slight fall of efficiency and higher exhausttemperature, for natural gas. The air-fuel ratio for optimum performance was higher for gas than for petrol.This variation in spark requirement is mainly due to the slower speed of flame propagation for natural gas.For both the cases, the best power spark advance for natural gas was found to have higher values thanpetrol. This issue needs to be addressed during retrofitting petrol engines for running on natural gas.Journal of Chemical Engineering Vol.ChE 24 2006 42-49


Author(s):  
Yasufumi Yoshimoto ◽  
Eiji Kinoshita

This paper investigates the performance, exhaust emissions, and combustion characteristics of a dual fuel diesel engine fueled by CNG (compressed natural gas) as the main fuel. The experiments used standard ignition fuels prepared by n-hexadecane and heptamethylnonane which are used to define the ignitability of diesel combustion, and focused on the effects of fuels with better ignitability than ordinary gas oil such as fuels with higher cetane numbers, 70 and 100. Compared with gas oil ignition, a standard ignition fuel with C.N. 100 showed shorter ignition delays, and lower NOx exhaust concentrations, and engine noise. The results also showed that regardless of ignition fuel, misfiring occurred when the CNG supply was above 75%. While the CNG ratio where misfiring occurs lowered somewhat with increasing C.N., the combustion stability (defined as the standard deviation in the cycle to cycle variation of IMEP divided by the mean value of IMEP) was little influenced. In summary, the results show that the influence of the ignitability on the engine performance and emission characteristics of the dual fuel operation is relatively small when the ignition fuel has C.N., and similar to or higher than ordinary gas oil.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.


1995 ◽  
Vol 117 (4) ◽  
pp. 820-825 ◽  
Author(s):  
G. P. Mueller

A G3600 engine was developed to operate on landfill gas to demonstrate engine performance and identify any operational problems caused by this application. Fuel system and engine performance development were completed using simulated landfill gas containing carbon dioxide and natural gas at the Caterpillar Technical Center. The engine was packaged as a generator set and has operated for 12,000 hours on landfill gas. Engine performance goals similar to those for G3600 natural gas applications were achieved during development and were attained during the field test. Development work and field test endurance results are presented in this paper.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110454
Author(s):  
Erdal Tunçer ◽  
Tarkan Sandalcı ◽  
Yasin Karagöz

In this study, a single cylinder of 1.16 L, naturally aspirated engine was converted to a spark ignition engine, which was a diesel engine operating with natural gas as fuel. By placing electronic throttle, electronic ignition module, gas fuel injectors and proximity sensors on the test engine, the engine has been turned into a positive ignition engine that can work with natural gas as fuel, thanks to the electronic control unit developed by our project team. Then, in the study performed, different cycle skipping strategies were experimentally investigated at a constant engine speed of 1565 rpm, in accordance with the generator operating conditions. Engine performance, emissions (CO, HC, and NOx), and combustion characteristics (cylinder pressure, rate of heat release, etc.) of cycle skipping strategies were experimentally investigated with natural gas as fuel in Normal, 3N1S, 2N1S, and 1N1S engine operating modes. According to the results obtained, specific fuel consumption, CO and HC values improved in all cycle skipping operating conditions, except for NOx, but the best results were obtained in 2N1S operating conditions; it was concluded that the specific fuel consumption, CO and HC values improved by 11.19%, 61.89%, and 65.60%, respectively.


Sign in / Sign up

Export Citation Format

Share Document