Plug Flow of Coarse Particles in a Horizontal Pipe

1982 ◽  
Vol 104 (2) ◽  
pp. 198-206 ◽  
Author(s):  
Y. Tsuji ◽  
Y. Morikawa

Plug flow of coarse particles was investigated experimentally in a horizontal pipe, in which a sub-pipe for secondary air injection was installed. Measurements were made about the plug motion, pressure drop, and transportation properties, and the roles of the main and sub-pipe air flow were clarified. The main air flow increases the number of plugs, while the sub-pipe air flow increases the plug velocity. The higher the main pipe air flow rate, the more regular the motion. The height of a stationary layer of deposited particles, which is built on the bottom of the main pipe, decreases with increasing the sub-pipe air flow rate. The pressure drop in the moving plug is quantitatively much smaller than that in the stationary packed bed of same particles.

Author(s):  
Ari Kettunen ◽  
Timo Hyppa¨nen ◽  
Ari-Pekka Kirkinen ◽  
Esa Maikkola

The main objective of this study was to investigate the load change capability and effect of the individual control variables, such as fuel, primary air and secondary air flow rates, on the dynamics of large-scale CFB boilers. The dynamics of the CFB process were examined by dynamic process tests and by simulation studies. A multi-faceted set of transient process tests were performed at a commercial 235 MWe CFB unit. Fuel reactivity and interaction between gas flow rates, solid concentration profiles and heat transfer were studied by step changes of the following controllable variables: fuel feed rate, primary air flow rate, secondary air flow rate and primary to secondary air flow ratio. Load change performance was tested using two different types of tests: open and closed loop load changes. A tailored dynamic simulator for the CFB boiler was built and fine-tuned by determining the model parameters and by validating the models of each process component against measured process data of the transient test program. The know-how about the boiler dynamics obtained from the model analysis and the developed CFB simulator were utilized in designing the control systems of three new 262 MWe CFB units, which are now under construction. Further, the simulator was applied for the control system development and transient analysis of the supercritical OTU CFB boiler.


Author(s):  
V Sureshkannan ◽  
TV Arjunan ◽  
D Seenivasan ◽  
SP Anbuudayasankar ◽  
M Arulraj

Compressed air free from traces of water vapour is vital in many applications in an industrial sector. This study focuses on parametric optimization of a pressure-based packed bed adsorption system for air dehumidification through the Taguchi method and Genetic Algorithm. The effect of operational parameters, namely absolute feed air pressure, feed air linear velocity, and purge air flow rate percent on adsorption uptake rate of molecular sieve 13X-water pair, are studied based on L25 orthogonal array. From the analysis of variance, it has been found that absolute feed air pressure and purge air flow rate percent were the parameters making significant improvement in the adsorption uptake rate. A correlation representing the process was developed using regression analysis. The optimum adsorption conditions were obtained through the Taguchi method and genetic algorithm and verified through the confirmation experiments. This system can be recommended for the industrial and domestic applications that require product air with the dew point temperature below 0°C.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8508
Author(s):  
Oleg G. Avrunin ◽  
Yana V. Nosova ◽  
Ibrahim Younouss Abdelhamid ◽  
Sergii V. Pavlov ◽  
Natalia O. Shushliapina ◽  
...  

This study analyzes the existing methods for studying nasal breathing. The aspects of verifying the results of rhinomanometric diagnostics according to the data of spiral computed tomography are considered, and the methodological features of dynamic posterior active rhinomanometry and the main indicators of respiration are also analyzed. The possibilities of testing respiratory olfactory disorders are considered, the analysis of errors in rhinomanometric measurements is carried out. In the conclusions, practical recommendations are given that have been developed for the design and operation of tools for functional diagnostics of nasal breathing disorders. It is advisable, according to the data of dynamic rhinomanometry, to assess the functioning of the nasal valve by the shape of the air flow rate signals during forced breathing and the structures of the soft palate by the residual nasopharyngeal pressure drop. It is imperative to take into account not only the maximum coefficient of aerodynamic nose drag, but also the values of the pressure drop and air flow rate in the area of transition to the turbulent quadratic flow regime. From the point of view of the physiology of the nasal response, it is necessary to look at the dynamic change to the current mode, given the hour of the forced response, so that it will ensure the maximum possible acidity in the legend. When planning functional rhinosurgical operations, it is necessary to apply the calculation method using computed tomography, which makes it possible to predict the functional result of surgery.


2004 ◽  
Vol 2004.2 (0) ◽  
pp. 427-428
Author(s):  
Daisuke YAMAMOTO ◽  
Mitsuaki OCHI ◽  
Masahiro TAKEI ◽  
Yoshihiro TANIGUCHI

Author(s):  
R. P. Roy ◽  
S. Devasenathipathy ◽  
G. Xu ◽  
Y. Zhao

Experimental and computational studies of the turbulent flow field in a model gas turbine disk cavity have been carried out. The experiments were performed in a rig which features a rotor disk-stator disk configuration with stator vanes, rotor blades, and rim discouragers with axial overlap. Particle Image Velocimetry was used to map the flow field in the cavity at three positions along the axial gap between the disks for various mainstream and secondary air flow rates, and rotor speeds. Static pressure distribution in the cavity at the stator disk and the circumferential distribution of the same at the mainstream passage outer shroud were measured. A recirculation region developed radially inboard in the disk cavity where a strong radial outflow was found close to the rotor disk and a weak radial inflow near the stator disk. This is the source region where the rotation of the core fluid is minimal, its radial extent increasing with the secondary air flow rate. Radially outboard, in the core region, the flow was rotation-dominated except when the secondary air flow rate was high. The peak-to-peak amplitude of the circumferential pressure asymmetry in the mainstream flow path increased as the square of the main air flow rate, attained its maximum value at the stator vane exit, and decreased rapidly downstream. For the experiments performed, no circumferential pressure asymmetry could be found in the disk cavity, even near its rim. The rotating fluid in the core region of the cavity gave rise to an adverse radial pressure gradient, its magnitude increasing as the secondary air flow rate decreased. This feature can facilitate ingress of mainstream gas into the cavity. Concurrently with the experiments, the flow field was simulated numerically using the commercial CFD code FLUENT/UNS. The agreement between the measurements and the computed results is generally good.


1976 ◽  
Vol 1 (15) ◽  
pp. 170
Author(s):  
Nabil Ismail

Based on a literature review of theoretical and experimental work on air-bubble systems, guidelines for the ideal design of submerged distributors discharging air into water are presented. A comprehensive study of gas-liquid dispersions was carried out to find out the effect of physical properties, distributor arrangement, and the air flow rate, on the flow pattern within the jet. This review revealed that the distributor arrangement largely influences the characteristics of the dispersion within the zone of flow establishment. Also, upon analyzing the experimental results of air-water systems, it was found that the zone of flow establishment extends to greater distances of the water depth than that in the case of one-phase turbulent plumes. Furthermore, the experimental results showed that the efficiency of air bubble plumes can be increased by the proper design of the distributor. Recommendations for the distributor design are given, which include, diameter of orifices and their spacings, pressure drop across orifices, number of manifolds, and the maximum air flow rate.


Author(s):  
Greg Barker ◽  
Kosol Kiatreungwattana

Transpired solar collectors are simple and cost-effective devices suited for preheating ventilation air for buildings. They work by drawing outside air through a south-facing perforated metal absorber. The absorber is heated by solar radiation, heat is transferred to the air as it is drawn through the perforations in the absorber, and the pre-heated air is delivered to the building. Often overlooked in the design of transpired collector systems is the effect on collector efficiency of pressure drop across the absorber. The pressure drop is a function of the air flow rate through the perforations, the overall porosity of the absorber, and the properties of the air. The National Renewable Energy Laboratory (NREL) conducted a series of laboratory tests to characterize the pressure drop as a function of the relevant parameters for six commercially-available absorber configurations; three porosities in aluminum and three in steel. Each absorber material is roll-punched to one of three depths to create absorbers with three different porosities. Pressure drop, air flow rate, air temperature, and air relative humidity data were collected during the tests. The data were fit to a model that can be used to predict pressure drop across the absorber as a function of air properties and flow rate. Use of these correlations is expected to aid designers in ensuring that transpired collector systems are designed for optimal thermal efficiency and cost effectiveness.


Author(s):  
Danish Rahman ◽  
Ahmad Almomani ◽  
Ibrahim Hassan ◽  
Yasser Al-Hamidi ◽  
Aziz Rahman

This paper aimed to study two-phase flow under adiabatic conditions through the process of flow visualization. This was done through the use of a test section with a cross flow and a jet impingement (swirl jet). The flow regimes under different air-water flow rates were determined using a high-speed camera that recorded digital videos. For each of the flow rates the pressure differential between the inlet and the outlets were measured. Through the pressure drop it is proposed that the types of flow regimes may later be able to be predicted. Nine air-water flow rates were considered to collect data and generate a flow map for the impingement jet and cross flow. The major observed flow regimes within the crossflow and impingement jet followed the predicted trend with bubbly and plug flow in the former, and slug flow in the latter. It was further observed that increasing the air flow rate increased the likelihood of bubbly and plug flow in both the cross-flow and impingement jet. In the cross flow, a lower air flow rate resulted in bubbly flow while within the impingement jet, a lower air flow rate resulted in slug flow.


Author(s):  
Ivan A. Zubrilin ◽  
Dmitriy N. Dmitriev ◽  
Sergey S. Matveev ◽  
Sergey G. Matveev

This paper will discuss the investigation of the nonreacting swirling flow downstream of the burner with the central body. This burner is designed for burning partially prepared fuel-air mixture. The burner consists of the axial swirler and the central body. The swirler plays the role of the premixer, and the central body is used to stabilize the flame. The simulation was conducted with the commercial software ANSYS Fluent 15.0. At present, the most widespread CFD approaches to the swirling flow investigation are URANS and LES. In this study URANS is used for obtaining flow charts and LES is used for detailed research of swirling flow structures. The influences of the model parameters (turbulence models, geometry simplification) and numerical parameters (the number of grid elements) on the burner pressure drop are shown in the simulation results. The LES results were compared with the experimental data on the flow structure downstream of the burner. The measurements were provided by 2D PIV with the imaging frequency of 500 Hz and 1000 Hz. It was found that in the investigated range of parameters the burner pressure drop changes slightly and is in good agreement with the experimental data. It was shown that the results of the PIV measurements with the different imaging frequency are in good agreement. The results show that flow behavior achieved in simulation is in accordance with the PIV measurements. It is shown that the flow separation from the central body trailing edge results in formation of large eddies and high velocity fluctuations. On the one hand it can contribute to the mixing of pilot fuel with air, but on the other hand it can lead to high amplitude pressure oscillations during combustion. The form and the frequency of the precessing vortex core were discovered. It was found that the maximum air flow rate through the recirculation zone is about 12% of the total air flow rate through the burner.


Sign in / Sign up

Export Citation Format

Share Document