Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods

2019 ◽  
Vol 68 (7) ◽  
pp. 573-584 ◽  
Author(s):  
Robabeh Jafari ◽  
Ali Torabian ◽  
Mohammad Ali Ghorbani ◽  
Seyed Ahmad Mirbagheri ◽  
Amir Hessam Hassani

Abstract Aquifers are one of the largest available freshwater resources. In this paper, total dissolved solids (TDS) of the groundwater aquifer in Tabriz plain is estimated by groundwater physicochemical parameters including Na, HCO3, Ca, Mg, and SO4 in the eastern region of Urmia Lake. For this purpose, four soft computing approaches, namely, multilayer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and gene expression programming (GEP) were used to predict TDS for a period of 10 years (2002–2012). Data were collected from the East Azerbaijan Regional Water Organization, which totaled 1,742 samples. In the application, of the whole data set, 70% (1,220 samples) was used for training and 30% (522 samples) for testing. In the following, the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) statistics were used for evaluating the accuracy of the models. According to the results, MLP, ANFIS, SVM, and GEP models could be employed successfully in estimating TDS alterations. A comparison was made between these soft computing approaches that corroborated the superiority of the GEP model over MLP, SVM, and ANFIS models with RMSE = 58.93, R = 0.998, and MAE = 5.21.

2016 ◽  
Vol 18 (4) ◽  
pp. 724-740 ◽  
Author(s):  
Hasan G. Elmazoghi ◽  
Vail Karakale (Waiel Mowrtage) ◽  
Lubna S. Bentaher

Accurate prediction of peak outflows from breached embankment dams is a key parameter in dam risk assessment. In this study, efficient models were developed to predict peak breach outflows utilizing artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Historical data from 93 embankment dam failures were used to train and evaluate the applicability of these models. Two scenarios were applied with each model by either considering the whole data set without classification or classifying the set into small dams (48 dams) and large dams (45 dams). In this way, nine models were developed and their results were compared to each other and to the results of the best available regression equations and recent gene expression programming. Among the different models, the ANFIS model of the first scenario exhibited better performance based on its higher efficiency (E = 0.98), higher coefficient of determination (R2 = 0.98) and lower mean absolute error (MAE = 840.9). Moreover, models based on classified data enhanced the prediction of peak outflows particularly for small dams. Finally, this study indicated the potential of the developed ANFIS and ANN models to be used as predictive tools of peak outflow rates of embankment dams.


2018 ◽  
Vol 19 (2) ◽  
pp. 392-403 ◽  
Author(s):  
Omolbani Mohammadrezapour ◽  
Jamshid Piri ◽  
Ozgur Kisi

Abstract Evapotranspiration is an important component in planning and management of water resources. It depends on climatic factors and the influence of these factors on each other makes evapotranspiration estimation difficult. This study attempts to explore the possibility of predicting this important component using three different heuristic methods: support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). In this regard, according to the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith equation, the monthly potential evapotranspiration in four synoptic stations (Zahedan, Zabol, Iranshahr, and Chabahar) was calculated using monthly weather data. The weather data were then used as inputs to the SVM, ANFIS and GEP models to estimate potential evapotranspiration. Five different input combinations were tried in the applications. The results of SVM, ANFIS and GEP models were compared based on the coefficient of determination (R2), mean absolute error and root mean square error. Findings showed that the SVM model, whose inputs are average air temperature, relative humidity, wind speed, and sunny hours of the current and one previous month, performed better than the other models for the Zahedan, Zabol, Iranshahr, and Chabahar stations. Comparison of the three heuristic methods indicated that in all stations, the SVM, GEP and ANFIS models took first, second, and third place in estimation of the monthly potential evapotranspiration, respectively.


2016 ◽  
Vol 20 (2) ◽  
pp. 1 ◽  
Author(s):  
Saeed Samadianfard ◽  
Honeyeh Kazemi ◽  
Ozgur Kisi ◽  
Wen-Cheng Liu

Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft computing techniques including gene expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the performance of the soft computing techniques, three different statistical indicators were used, including the root mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results showed that the GEP had the best performances among other studied methods in the prediction of hourly water temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error (RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths. ResumenLa temperatura del agua es uno de los parámetros básicos para determinar las condiciones ecológicas de un lago, ya que está influenciada por procesos químicos y biológicos. Además, la exactitud en la predicción de la temperatura del agua es esencial para el manejo del lago. En este artículo se evalúa el desempeño de técnicas de soft computing como la Programación de Expresiones de Genes (PEG), que es una variante de la Programación Genética (PG), el Sistema Neuro-fuzzy de Inferencia Adaptativa (Anfis, en inglés) y las Redes Neuronales Artificiales (RNA) para predecir la temperatura del agua en diferentes niveles de una estación flotante del lago Yuan-Yang (YYL), en el centro-norte de Taiwán. Se utilizaron tres indicadores estadísticos, el Error Cuadrático Medio (ECM), el Error Absoluto Medio (MAE, en inglés) y el Coeficiente de Correlación (R) para evaluar el desempeño de las técnicas de computación. Los resultados muestran que la PEG es más exacta en la predicción de la temperatura del agua entre 0,2 y 3 metros de profundidad. Sin embargo, se evidencia una tendencia diferente a partir del metro de profundidad. A esta distancia de la superficie, las RNA son más exactas que la PEG y el Anfis. Los resultados de este estudio probaron claramente la usabilidad del PEG y las RNA en la predicción de la temperatura del agua a diferentes profundidades.


2020 ◽  
Vol 12 (5) ◽  
pp. 2022 ◽  
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang

This study continues a previous study with further analysis of watershed-scale erosion pin measurements. Three machine learning (ML) algorithms—Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Artificial Neural Network (ANN)—were used to analyze depth of erosion of a watershed (Shihmen reservoir) in northern Taiwan. In addition to three previously used statistical indexes (Mean Absolute Error, Root Mean Square of Error, and R-squared), Nash–Sutcliffe Efficiency (NSE) was calculated to compare the predictive performances of the three models. To see if there was a statistical difference between the three models, the Wilcoxon signed-rank test was used. The research utilized 14 environmental attributes as the input predictors of the ML algorithms. They are distance to river, distance to road, type of slope, sub-watershed, slope direction, elevation, slope class, rainfall, epoch, lithology, and the amount of organic content, clay, sand, and silt in the soil. Additionally, measurements of a total of 550 erosion pins installed on 55 slopes were used as the target variable of the model prediction. The dataset was divided into a training set (70%) and a testing set (30%) using the stratified random sampling with sub-watershed as the stratification variable. The results showed that the ANFIS model outperforms the other two algorithms in predicting the erosion rates of the study area. The average RMSE of the test data is 2.05 mm/yr for ANFIS, compared to 2.36 mm/yr and 2.61 mm/yr for ANN and SVM, respectively. Finally, the results of this study (ANN, ANFIS, and SVM) were compared with the previous study (Random Forest, Decision Tree, and multiple regression). It was found that Random Forest remains the best predictive model, and ANFIS is the second-best among the six ML algorithms.


2020 ◽  
Vol 20 (8) ◽  
pp. 3156-3171
Author(s):  
Hiwa Farajpanah ◽  
Morteza Lotfirad ◽  
Arash Adib ◽  
Hassan Esmaeili-Gisavandani ◽  
Özgur Kisi ◽  
...  

Abstract This research uses the multi-layer perceptron–artificial neural network (MLP-ANN), radial basis function–ANN (RBF-ANN), least square support vector machine (LSSVM), adaptive neuro-fuzzy inference system (ANFIS), M5 model tree (M5T), gene expression programming (GEP), genetic programming (GP) and Bayesian network (BN) with five types of mother wavelet functions (MWFs: coif4, db10, dmey, fk6 and sym7) and selects the best model by the TOPSIS method. The case study is the Navrood watershed in the north of Iran and the considered parameters are daily flow discharge, temperature and precipitation during 1991 to 2018. The derived results show that the best method is the hybrid of the M5T model with sym7 wavelet function. The MWFs were decomposed by discrete wavelet transform (DWT). The combination of AI models and MWFs improves the correlation coefficient of MLP, RBF, LSSVM, ANFIS, GP, GEP, M5T and BN by 8.05%, 4.6%, 8.14%, 8.14%, 22.97%, 7.5%, 5.75% and 10% respectively.


2018 ◽  
Vol 931 ◽  
pp. 985-990
Author(s):  
Ahmed S. Khalil ◽  
Sergey V. Starovoytov ◽  
Nikolai S. Serpokrylov

The adaptive neuro-fuzzy inference system (ANFIS) model was developed to predict the removal of ammonium () from wastewater. The ANFIS model was developed and validated with a data set from a pilot-scale of adsorption system treating aqueous solutions and wastewater from fish farms. The data sets consist of four parameters, which include pH, temperature, an initial concentration of ammonium and amount of adsorbent. The adsorbent was biochar obtained from rice straw. The ANFIS models performance was assessed through the root mean absolute error (RMSE) and was validated by testing data. The results of the study show that the adaptive neuro-fuzzy inference system (ANFIS) is able to predict the percentage of ammonium removal from adsorption column according to the input variables with acceptable accuracy, suggesting that the adaptive neuro-fuzzy inference system model is a valuable tool for estimating the quality of fish farms water. This model of ANFIS leads to cost reduction because prediction can be done without resorting to efforts that require cost and time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Omid Bozorg-Haddad ◽  
Sahar Baghban ◽  
Hugo A. Loáiciga

AbstractWater is a vital element that plays a central role in human life. This study assesses the status of indicators based on water resources availability relying on hydro-social analysis. The assessment involves countries exhibiting decreasing trends in per capita renewable water during 2005–2017. Africa, America, Asia, Europe, and Oceania encompass respectively 48, 35, 43, 20, and 5 countries with distinct climatic conditions. Four hydro-social indicators associated with rural society, urban society, technology and communication, and knowledge were estimated with soft-computing methods [i.e., artificial neural networks, adaptive neuro-fuzzy inference system, and gene expression programming (GEP)] for the world’s continents. The GEP model’s performance was the best among the computing methods in estimating hydro-social indicators for all the world’s continents based on statistical criteria [correlation coefficient (R), root mean square error (RMSE), and mean absolute error]. The values of RMSE for GEP models for the ratio of rural to urban population (PRUP), population density, number of internet users and education index parameters equaled (0.084, 0.029, 0.178, 0.135), (0.197, 0.056, 0.152, 0.163), (0.151, 0.036, 0.123, 0.210), (0.182, 0.039, 0.148, 0.204) and (0.141, 0.030, 0.226, 0.082) for Africa, America, Asia, Europe and Oceania, respectively. Scalable equations for hydro-social indicators are developed with applicability at variable spatial and temporal scales worldwide. This paper’s results show the patterns of association between social parameters and water resources vary across continents. This study’s findings contribute to improving water-resources planning and management considering hydro-social indicators.


2019 ◽  
Vol 9 (15) ◽  
pp. 3172 ◽  
Author(s):  
Hoang-Long Nguyen ◽  
Thanh-Hai Le ◽  
Cao-Thang Pham ◽  
Tien-Thinh Le ◽  
Lanh Si Ho ◽  
...  

The main objective of this study is to develop and compare hybrid Artificial Intelligence (AI) approaches, namely Adaptive Network-based Fuzzy Inference System (ANFIS) optimized by Genetic Algorithm (GAANFIS) and Particle Swarm Optimization (PSOANFIS) and Support Vector Machine (SVM) for predicting the Marshall Stability (MS) of Stone Matrix Asphalt (SMA) materials. Other important properties of the SMA, namely Marshall Flow (MF) and Marshall Quotient (MQ) were also predicted using the best model found. With that goal, the SMA samples were fabricated in a local laboratory and used to generate datasets for the modeling. The considered input parameters were coarse and fine aggregates, bitumen content and cellulose. The predicted targets were Marshall Parameters such as MS, MF and MQ. Models performance assessment was evaluated thanks to criteria such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and correlation coefficient (R). A Monte Carlo approach with 1000 simulations was used to deduce the statistical results to assess the performance of the three proposed AI models. The results showed that the SVM is the best predictor regarding the converged statistical criteria and probability density functions of RMSE, MAE and R. The results of this study represent a contribution towards the selection of a suitable AI approach to quickly and accurately determine the Marshall Parameters of SMA mixtures.


This paper discusses an efficient algorithm for sentiment classification of online text reviews posted in social networking sites and blogs which are mostly in unstructured and ungrammatical in nature. Model proposed in this paper utilizes support vector machine supervised learning algorithm and fuzzy inference system for enhancing the degree of sentiment polarity of text reviews and providing multilevel polarity categories. Model is also able to predict degree of sentiment polarity of online reviews. The model accuracy is validated on twitter data set and compared with another earlier model.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 547 ◽  
Author(s):  
Rana Muhammad Adnan ◽  
Zhihuan Chen ◽  
Xiaohui Yuan ◽  
Ozgur Kisi ◽  
Ahmed El-Shafie ◽  
...  

The study investigates the potential of two new machine learning methods, least-square support vector regression with a gravitational search algorithm (LSSVR-GSA) and the dynamic evolving neural-fuzzy inference system (DENFIS), for modeling reference evapotranspiration (ETo) using limited data. The results of the new methods are compared with the M5 model tree (M5RT) approach. Previous values of temperature data and extraterrestrial radiation information obtained from three stations, in China, are used as inputs to the models. The estimation exactness of the models is measured by three statistics: root mean square error, mean absolute error, and determination coefficient. According to the results, the temperature or extraterrestrial radiation-based LSSVR-GSA models perform superiorly to the DENFIS and M5RT models in terms of estimating monthly ETo. However, in some cases, a slight difference was found between the LSSVR-GSA and DENFIS methods. The results indicate that better prediction accuracy may be obtained using only extraterrestrial radiation information for all three methods. The prediction accuracy of the models is not generally improved by including periodicity information in the inputs. Using optimum air temperature and extraterrestrial radiation inputs together generally does not increase the accuracy of the applied methods in the estimation of monthly ETo.


Sign in / Sign up

Export Citation Format

Share Document