Heat Transfer-Based Reconstruction of the Concepts and Laws of Classical Thermodynamics

1988 ◽  
Vol 110 (1) ◽  
pp. 243-249 ◽  
Author(s):  
A. Bejan

As an alternative to the mechanistic point of view expressed in Carathe´odory’s axioms, it is shown that the laws and concepts of thermodynamics are covered also by two statements made from a purely heat transfer perspective: Axiom I′—The heat transfer is the same in all zero-work processes that take a system from a given initial state to a given final state. Axiom II′—In the immediate neighborhood of every state of a system there are other states that cannot be reached from the first via a zero-work process. The primary concepts of this formulation are heat transfer, temperature, entropy, and zero-work boundary. Axiom I′ is used to define the property “energy,” and to deduce the secondary (derived) concept of “work transfer.” Axiom II′ is used to define the thermodynamic properties of “volume” and “pressure.” In this new heat transfer-based scheme, the analog of the Kelvin–Planck statement of the second law is: “∮δW < 0 is impossible” for an integral number of cycles executed by a closed system while in communication with no more than one pressure reservoir.

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 73
Author(s):  
Omar Jiménez ◽  
Miguel Angel Solís–Prosser ◽  
Leonardo Neves ◽  
Aldo Delgado

We studied the mutual information and quantum discord that Alice and Bob share when Bob implements a discrimination with a fixed rate of inconclusive outcomes (FRIO) onto two pure non-orthogonal quantum states, generated with arbitrary a priori probabilities. FRIO discrimination interpolates between minimum error (ME) and unambiguous state discrimination (UD). ME and UD are well known discrimination protocols with several applications in quantum information theory. FRIO discrimination provides a more general framework where the discrimination process together with its applications can be studied. In this setting, we compared the performance of optimum probability of discrimination, mutual information, and quantum discord. We found that the accessible information is obtained when Bob implements the ME strategy. The most (least) efficient discrimination scheme is ME (UD), from the point of view of correlations that are lost in the initial state and remain in the final state, after Bob’s measurement.


Author(s):  
Tolga Altinoluk ◽  
Néstor Armesto

Abstract The observation in small size collision systems, pp and pA, of strong correlations with long range in rapidity and a characteristic structure in azimuth, the ridge phenomenon, is one of the most interesting results obtained at the large hadron collider. Earlier observations of these correlations in heavy ion collisions at the relativistic heavy ion collider are standardly attributed to collective flow due to strong final state interactions, described in the framework of viscous relativistic hydrodynamics. Even though data for small size systems are well described in this framework, the applicability of hydrodynamics is less well grounded and initial state based mechanisms have been suggested to explain the ridge. In this review, we discuss particle correlations from the initial state point of view, with focus on the most recent theoretical developments.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 58
Author(s):  
Andraž Bradeško ◽  
Lovro Fulanović ◽  
Marko Vrabelj ◽  
Aleksander Matavž ◽  
Mojca Otoničar ◽  
...  

Despite the challenges of practical implementation, electrocaloric (EC) cooling remains a promising technology because of its good scalability and high efficiency. Here, we investigate the feasibility of an EC cooling device that couples the EC and electromechanical (EM) responses of a highly functionally, efficient, lead magnesium niobate ceramic material. We fabricated multifunctional cantilevers from this material and characterized their electrical, EM and EC properties. Two active cantilevers were stacked in a cascade structure, forming a proof-of-concept device, which was then analyzed in detail. The cooling effect was lower than the EC effect of the material itself, mainly due to the poor solid-to-solid heat transfer. However, we show that the use of ethylene glycol in the thermal contact area can significantly reduce the contact resistance, thereby improving the heat transfer. Although this solution is most likely impractical from the design point of view, the results clearly show that in this and similar cooling devices, a non-destructive, surface-modification method, with the same effectiveness as that of ethylene glycol, will have to be developed to reduce the thermal contact resistance. We hope this study will motivate the further development of multifunctional cooling devices.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


Author(s):  
Cengiz Camci ◽  
Boris Glezer

The liquid crystal thermography can be successfully used in both transient and steady-state heat transfer experiments with excellent spatial resolution and good accuracy. Although most of the past liquid crystal based heat transfer studies are reported in the stationary frame, measurements from the rotating frame of turbomachinery systems exist The main objective of the present investigation is to determine the influence of rotation on the color calibration of encapsulated liquid crystals sprayed on the flat surface of a rotating aluminum disk. The investigation is performed for a rotational speed range from 0 rpm to 7500 rpm using three different liquid crystal coatings displaying red at 30, 35 and 45° C, under stationary conditions. An immediate observation from the present study is that the color response of liquid crystals is strongly modified by the centrifugal acceleration of the rotating environment. It is consistently and repeatedly observed that the hue versus temperature curve is continuously shifted toward lower temperatures by increasing rotational speed. The relative shift of the display temperature of the green can be as high as 7°C at 7500 rpm when compared to the temperature of the green observed under stationary conditions. The present study shows that relative shift of the liquid crystal color has a well-defined functional dependency to rotational speed. The shift is linearly proportional to the centrifugal acceleration. It is interesting to note that the individual shift curves of the green for all three liquid crystal coatings collapse into a single curve when they are normalized with respect to their own stationary green values. When the color attribute is selected as “intensity” instead of “hue”, very similar shifts of the temperature corresponding to the intensity maximum value appearing around green is observed. An interpretation of the observed color shift is made from a thermodynamics energy balance point of view.


1991 ◽  
Vol 113 (3) ◽  
pp. 258-262 ◽  
Author(s):  
J. G. Stack ◽  
M. S. Acarlar

The reliability and life of an Optical Data Link transmitter are inversely related to the temperature of the LED. It is therefore critical to have efficient packaging from the point of view of thermal management. For the ODL® 200H devices, it is also necessary to ensure that all package seals remain hermetic throughout the stringent military temperature range requirements of −65 to +150°C. For these devices, finite element analysis was used to study both the thermal paths due to LED power dissipation and the thermally induced stresses in the hermetic joints due to ambient temperature changes


1990 ◽  
Vol 112 (2) ◽  
pp. 130-135 ◽  
Author(s):  
S. K. Som ◽  
A. K. Mitra ◽  
S. P. Sengupta

A second law analysis has been developed for an evaporative atomized spray in a uniform parallel stream of hot gas. Using a discrete droplet evaporation model, an equation for entropy balance of a drop has been formulated to determine numerically the entropy generation histories of the evaporative spray. For the exergy analysis of the process, the rate of heat transfer and that of associated irreversibilities for complete evaporation of the spray have been calculated. A second law efficiency (ηII), defined as the ratio of the total exergy transferred to the sum of the total exergy transferred and exergy destroyed, is finally evaluated for various values of pertinent input parameters, namely, the initial Reynolds number (Rei = 2ρgVixi/μg) and the ratio of ambient to initial drop temperature (Θ∞′/Θi′).


Author(s):  
Adriana Keating ◽  
Karen Campbell ◽  
Michael Szoenyi ◽  
Colin McQuistan ◽  
David Nash ◽  
...  

Abstract. Given the increased attention on resilience-strengthening in international humanitarian and development work, there is a growing need to invest in its measurement and the overall accountability of "resilience strengthening" initiatives. We present a framework and tool for measuring community level resilience to flooding, built around the five capitals (5Cs) of the Sustainable Livelihoods Framework. At the time of writing the tool is being tested in 75 communities across 10 countries. Currently 88 potential sources of resilience are measured at the baseline (initial state) and endline (final state) approximately two years later. If a flood occurs in the community during the study period, resilience outcome measures are recorded. By comparing pre-flood characteristics to post flood outcomes, we aim to empirically verify sources of resilience, something which has never been done in this field. There is an urgent need for the continued development of theoretically anchored, empirically verified and practically applicable disaster resilience measurement frameworks and tools so that the field may: a) deepen understanding of the key components of "disaster resilience" in order to better target resilience enhancing initiatives, and b) enhance our ability to benchmark and measure disaster resilience over time, and compare how resilience changes as a result of different capacities, actions and hazards.


Sign in / Sign up

Export Citation Format

Share Document