A Variational Principle for the Hygrothermoelastodynamic Analysis of Mechanism Systems

1987 ◽  
Vol 109 (3) ◽  
pp. 294-300 ◽  
Author(s):  
C. K. Sung ◽  
B. S. Thompson

A variational theorem is presented that may be employed for systematically establishing the equations governing the dynamic response of flexible planar linkage mechanisms simultaneously subjected to both mechanical and hygrothermal loadings. This theoretical development is motivated by recent research advocating that high-speed mechanisms should be fabricated in polymeric fibrous composite materials in order to achieve high-performance characteristics. The constitutive behavior of some of these materials is, however, dependent upon the ambient environmental conditions, and hence mathematical models must be developed in order to predict the response of mechanism systems fabricated with these materials. This class of mechanism systems is modeled herein as a set of continua in which elastic deformations are superimposed upon gross rigid-body motions. By permitting arbitrary independent variations of the system parameters for each link, approximate equations of motion, energy balance, mass balance, and boundary conditions may be systematically constructed. As an illustrative example, the derivation of a problem definition for the flexible connecting-rod of a slider-crank mechanism subjected to hygrothermal loading is presented.

1976 ◽  
Vol 98 (4) ◽  
pp. 1306-1312 ◽  
Author(s):  
B. S. Thompson ◽  
A. D. S. Barr

A variational principle is presented that may be used for setting up the equations describing the elastodynamic motion of planar linkages in which all the members are considered to be flexible. These systems are modeled as a set of continua in which elastic deformations are superimposed on gross rigid-body motions. Displacement continuity at pin joints, or any other special constraints that are peculiar to the linkage being analyzed, are incorporated by the use of Lagrange multipliers. By permitting independent variations of the stress, strain, displacement, and velocity parameters for each link approximate equations of motion, boundary and compatibility conditions for the complete mechanism may be systematically constructed. As an illustrative example, the derivation of the problem definition for a flexible slider-crank mechanism is given.


1984 ◽  
Vol 106 (3) ◽  
pp. 291-296 ◽  
Author(s):  
C. K. Sung ◽  
B. S. Thompson ◽  
J. J. McGrath

A variational principle is presented which provides the basis for developing the equations governing the coupled thermoelastic response of planar flexible mechanism systems subjected to both mechanical and thermal loading. These systems are modeled as chains of continua with anisotropic elastic constitutive equations. By permitting arbitrary independent variations of the system parameters for each link, approximate equations of motion and boundary conditions may be systematically constructed. As an illustrative example, the derivation of the problem definition of a flexible connecting rod of a slider crank mechanism subjected to thermal shock is presented.


Author(s):  
Luca Bertocchi ◽  
Matteo Giacopini ◽  
Daniele Dini

In the present paper, the algorithm proposed by Giacopini et. al. [1], based on a mass-conserving formulation of the Reynolds equation using the concept of complementarity is suitably extended to include the effects of compressibility, piezoviscosity and shear-thinning on the lubricant properties. This improved algorithm is employed to analyse the performance of the lubricated small end and big end bearings of a connecting rod of a high performance motorbike engine. The application of the algorithm proposed to both the small end and the big end of a con-rod is challenging because of the different causes that sustain the hydrodynamic lubrication in the two cases. In the con-rod big end, the fluid film is mainly generated by the relative high speed rotation between the rod and the crankshaft. The relative speed between the two races forms a wedge of fluid that assures appropriate lubrication and avoids undesired direct contacts. On the contrary, at the con-rod small end the relative rotational speed is low and a complete rotation between the mating surfaces does not occurs since the con-rod only oscillates around its vertical axis. Thus, at every revolution of the crankshaft, there are two different moments in which the relative rotational speed between the con-rod and the piston pin is null. Therefore, the dominant effect in the lubrication is the squeeze caused by the high loads transmitted through the piston pin. In particular both combustion forces and inertial forces contribute to the squeeze effect. This work shows how the formulation developed by the authors is capable of predicting the performance of journal bearings in the unsteady regime, where cavitation and reformation occur several times. Moreover, the effects of the pressure and the shear rate on the density and on the viscosity of the lubricant are taken into account.


2020 ◽  
Vol 318 ◽  
pp. 01004
Author(s):  
Miroslav Blatnický ◽  
Ján Dižo

In this article, authors focus on the design and construction of a real prototype of an engine mechanism with rotating cylinders and its using mainly in piston combustion engines. It is assumed, that the normal force of a piston will be completely eliminated, because the swing angle of a connecting rod will equal to zero during the whole working cycle, since the connecting arm of the piston moves just the cylinder axis. It will by allowed by the conceptual design of the mechanism presented in this article. As rotating blocks of cylinders concurrently act as a flywheel, it is proposed, that in this way there is possible to save the mass of additional flywheels. Moreover, liquid cooling system is not necessary, because the rotating cylinders sufficiently transfer heat to ambient air. In addition, the output of torque will be reached without necessity of gear transmission, which results to decreasing of needs of mechanism lubrication. Other advance of the designed mechanism are two outputs. The first output is low-speed and it goes out from rotating cylinders, i. e. from the slider-crank mechanism with revolutions n1. The other output is high-speed, from the crankshaft with revolutions n2. Because of more favourable properties of the mechanism, authors have decided to create a real device to confirm all mentioned advantages of the mechanism by the suitable way.


1971 ◽  
Vol 93 (2) ◽  
pp. 636-644 ◽  
Author(s):  
Peter W. Jasinski ◽  
Ho Chong Lee ◽  
George N. Sandor

The research involved in this paper falls into the area of analytical vibrations applied to planar mechanical linkages. Specifically, a study of the vibrations, associated with an elastic connecting-bar for a high-speed slider-crank mechanism, is made. To simplify the mathematical analysis, the vibrations of an externally viscously damped uniform elastic connecting bar is taken to be hinged at each end (i.e., the moment and displacement are assumed to vanish at each end). The equations governing the vibrations of the elastic bar are derived, a small parameter is found, and the solution is developed as an asymptotic expansion in terms of this small parameter with the aid of the Krylov-Bogoliubov method of averaging. The elastic stability is studied and the steady-state solutions for both the longitudinal and transverse vibrations are found.


1982 ◽  
Vol 104 (1) ◽  
pp. 159-167 ◽  
Author(s):  
M. Badlani ◽  
A. Midha

Parametric vibration of initially curved columns loaded by axial-periodic loads has received considerable attention, concluding that regions of instability exist and that excitation frequencies less than the natural frequency of the principal resonance may occur. Recent publications have cautioned against the use of curved members in machines designed for precise operation, suggesting a detrimental coupling of the longitudinal and transverse deformations. In this work, the dynamic behavior of a slider-crank mechanism with an initially curved connecting rod is investigated. Governing equations of motion are developed using the Euler-Bernoulli beam theory. Both steady-state and transient solutions are determined, and compared with those obtained for the mechanism possessing a geometrically perfect (straight) connecting rod. A very small initial curvature is shown to cause a significantly greater steady-state response. The magnification in its transient response is shown to be even greater than that due to a straight connecting rod. Additionally, an excitation frequency less than the natural frequency is also shown to occur.


1970 ◽  
Vol 185 (1) ◽  
pp. 273-283 ◽  
Author(s):  
G. P. Blair ◽  
M. B. Johnston

The design of medium capacity, high specific output, two-stroke cycle engines is of increasing interest due to the expanding market for motor cycles and leisure vehicles, particularly in the United States. It is felt that there is a growing need to apply modern techniques to this design process, which covers the entire spectrum of mechanical engineering from fluid mechanics to stress mechanics. This paper describes the effective utilization of a high speed digital computer for those calculations connected with the unsteady gas dynamics of flow in the exhaust and transfer systems, the stressing of the connecting rod, the balancing of the crankshaft, the design of the combustion chamber, and the analysis of the porting of other high-performance engines so that an information library is stored. A method of experimentally determining loop-scavenging efficiency is evaluated. Further, a unique method of asymmetrically timing the inlet process of a two-stroke cycle engine is described and its initial development reported. The design of a complete engine, of 250 cm3swept volume, is detailed and its road and test-bed performance characteristics appraised. The engine produces 180 hp/litre as a specific output, at initial testing.


1991 ◽  
Vol 113 (1) ◽  
pp. 86-91
Author(s):  
J. C. Prucz ◽  
J. D’Acquisto ◽  
J. E. Smith

A new analytical model has been developed in order to investigate the potential benefits of using fiber-reinforced composites in pressure vessels that undergo rigid-body motions. The model consists of a quasi-static lamination analysis of a cylindrical, filament-wound, pressure vessel, combined with an elastodynamic analysis that accounts for the coupling effects between its rigid-body motion and its elastic deformations. The particular type of motion investigated in this paper is that of an oil-pressurized, tubular connecting rod in a slider-crank mechanism of an internal combustion engine. A comprehensive parametric study has been focused on the maximum wall stresses induced in such a rod by the combined effect of internal pressure and inertia loads associated with its motion. The numerical results illustrate potential ways to reduce these stresses by appropriate selection of material systems, lay-up configurations and geometric parameters.


Author(s):  
Yu Chen ◽  
Jun Feng ◽  
Qiang He ◽  
Yu Wang ◽  
Yu Sun ◽  
...  

Abstract The slider-crank mechanism is used widely in modern industrial equipment whereby the contact-impact of a revolute clearance joint affects the dynamic behavior of mechanical systems. Combining multibody dynamic theory and nonlinear contact theory, the computational methodology for dynamic analysis of the slider-crank mechanism with a clearance joint is proposed. The differential equations of motion are obtained considering the revolute clearance joint between the connecting rod and slider. In the mechanical system, the contact force is evaluated using the continuous force model proposed by Lankarani and Nikravesh, which can describe the contact-impact phenomenon accurately. Then, the experimental study is performed whereby the numerical results are compared with the test data to validate the proposed model. Moreover, the dynamic response analysis is conducted with various driving velocities and clearance sizes, which also explains that the sensitive dependence of a mechanical system on the revolute clearance joint.


Author(s):  
Kelsey Fieseler ◽  
Timothy J. Jacobs ◽  
Mark Patterson

This study discusses the motion of the articulated connecting rod of an integral-engine compressor and the effect of the kinematics on in-cylinder pressure and port timings. A piston position modeling technique based on kinematics and engine geometry is proposed in order to improve the accuracy of simulated in-cylinder compression pressures. Many integral-engine compressors operate with an articulated connecting rod. For this type of engine-driven compressor, two power pistons share a crank throw with the compressor. The hinge pins that attach the power piston connecting rods to the crank are offset, causing the piston locations for each cylinder to be out of phase with each other. This causes top dead center to occur at different crank angles, alters the geometric compression ratio, and also changes the port timings for each cylinder. In this study, the equations of motion for the pistons of the four possible compressor/piston configurations of a Cooper-Bessemer GMW are developed. With the piston profiles, the intake and exhaust port timings were determined and compared to those of a slider-crank mechanism. The piston profile was then inputted into GT-POWER, an engine modeling software developed by Gamma Technologies, in order to obtain an accurate simulation match to the experimental in-cylinder pressure data collected from a Cooper-Bessemer GMWH-10C. Assuming the piston motion of an engine with an articulated connecting rod is similar to a slider-crank mechanism can create a difference in port timings. The hinge pin offset creates asymmetrical motion about 180°aTDC, causing the port timings to also be asymmetrical about this location. The largest differences are shown in the intake port opening of about 10° and a difference in exhaust port opening of about 7° when comparing the motion of the correct configuration to the motion of a slider-crank mechanism. It is shown that properly calculating the piston motion profiles according to the crank articulation and engine geometry provides a good method of simulating in-cylinder pressure data during the compression stroke.


Sign in / Sign up

Export Citation Format

Share Document