On Slip Flow Considerations in Gas-Lubricated Porous Bearings

1984 ◽  
Vol 106 (4) ◽  
pp. 484-491 ◽  
Author(s):  
M. Malik ◽  
Cz. M. Rodkiewicz

A modified form of Reynolds equation is derived for the compressible lubrication of porous bearings. The analysis takes into account two kinds of nonadherence conditions on the sliding surfaces, namely, the slip flow under the influence of molecular mean free path and the slip flow at gas film-porous shell interface. Numerical results are presented to illustrate the relative effects of the two kinds of slip flow conditions on static characteristics of self acting journal bearings.

1959 ◽  
Vol 81 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Albert Burgdorfer

A modified Reynolds equation is derived for gas-lubricated hydrodynamic bearings operating under “slip flow” conditions. Closed analytical solutions are given for a Rayleigh type step-bearing and an inclined plane slider bearing for the case of two-dimensional flow. The influence of the molecular mean free path on the performance of bearings of arbitrary form is obtained by means of a small parameter, perturbation technique.


Author(s):  
Shitendu Some ◽  
Sisir K Guha

A theoretical analysis of the steady-state characteristics of finite hydrostatic double-layered porous journal bearings dealing with the effects of slip flow at the fine porous layer–film interface and percolation of additives into pores under the coupled stress fluid lubrication is presented. Based on the Beavers–Joseph’s criterion for slip flow, the modified Reynolds equation applicable to finite porous journal bearings lubricated with coupled stress fluids have been derived. The governing equations for flow in the coarse and fine layers of porous medium incorporating the percolation of polar additives of lubricant and the modified Reynolds equation are solved simultaneously using finite difference method satisfying appropriate boundary conditions to obtain the steady-state performance characteristics for various parameter namely percolation factor, slip coefficient, bearing feeding parameter, coupled stress parameter, and eccentricity ratio. The results are exhibited in the form of graphs, which may be useful for design of such bearing.


1989 ◽  
Vol 111 (4) ◽  
pp. 620-627 ◽  
Author(s):  
T. Ohkubo ◽  
S. Fukui ◽  
K. Kogure

This paper outlines experimental investigations of the static characteristics of self-acting gas-lubricated slider bearings operating in a helium-air mixture. The experimental results are compared with numerical results obtained by solving a modified Reynolds equation and a generalized lubrication equation based on an equivalent molecular mean free path (MMFP) and on an equivalent viscosity derived from molecular gas dynamics. At any mole ratio of air α, the values of the equivalent MMFP are generally expected to be smaller than those of the MMFP derived from linear interpolation, whereas the values of equivalent viscosity are expected to be larger. The numerical results agree well with the experimental results within the range of α from 1.0 to 0.6. Lower values of α give a bigger difference between numerical and experimental results, and make the experimental results lower than the numerical results. Moreover, results of a generalized lubrication equation based on the Boltzmann equation give a closer prediction or qualitative tendency to the experimental results than do those based on the modified Reynolds equation.


Author(s):  
S. K. Guha ◽  
A. K. Chattopadhyay

The objective of the present investigation is to study theoretically, using the finite-difference techniques, the dynamic performance characteristics of finite-hydrodynamic porous journal bearings lubricated with coupled stress fluids. In the analysis based on the Stokes micro-continuum theory of the rheological effects of coupled stress fluids, a modified form of Reynolds equation governing the transient-state hydrodynamic film pressures in porous journal bearings with the effect of slip flow of coupled stress fluid as lubricant is obtained. Moreover, the tangential velocity slip at the surface of porous bush has been considered by using Beavers-Joseph criterion. Using the first-order perturbation of the modified Reynolds equation, the stability characteristics in terms of threshold stability parameter and whirl ratios are obtained for various parameters viz. permeability factor, slip coefficient, bearing feeding parameter, and eccentricity ratio. The results show that the coupled stress fluid exhibits better stability in comparison with Newtonian fluid.


1968 ◽  
Vol 10 (4) ◽  
pp. 363-366
Author(s):  
M. D. Wood

The note compares recently published versions of the governing gas film equations for slip-flow and turbulent flow with Reynolds equation for laminar flow. The comparison shows how approximate values of steady-state and dynamic performance parameters may be deduced for the new conditions from existing data.


Author(s):  
M Malik

The purpose of this paper is to study the effect of slip under the influence of molecular mean free path on the steady state and dynamic performance characteristics of plain gas journal bearings. The theoretical investigations have been made over a wide range of compressibility number. It is found that slip usually impairs the bearing performance, particularly at low compressibility numbers, A; the effect of slip, however, diminishes with increasing values of A. In fact at high compressibility numbers, theory suggests that slip has a beneficial effect of improving the dynamic performance of the bearing.


1969 ◽  
Vol 91 (1) ◽  
pp. 87-103 ◽  
Author(s):  
R. C. Elwell ◽  
J. A. Findlay

Calculated load capacity and friction for complete pivoted-pad journal bearings are presented, for use in design computations. Dimensionless numerical results are given for the following variations in bearing geometry: 3 and 5 pads, L/D ratios of 1/2 to 1, pivot locations of 40, 50, and 60 percent, on pivot and between pivot loading, and ratios of “assembled” to “ground” clearance of 0.6, 0.8, and 1.0. The numerical results are an extension of the work of Castelli, et al., reference [1],1 and were generated in the same manner i.e., numerical solution of Reynolds’ equation by digital computer. Laminar, incompressible flow, and subambient pressures in diverging portions of the films were assumed. Illustrative numerical examples are included and significant conclusions with respect to major variables (L/D ratio, number of pads, clearances, pivot location, load direction) are drawn from the range of data produced.


1987 ◽  
Vol 109 (2) ◽  
pp. 276-282 ◽  
Author(s):  
Y. Mitsuya ◽  
T. Ohkubo

This paper presents a study into the gas lubrication capability of an ultra-thin 0.025 μm film (converted value for ambient air film). The experimental results obtained using subambient helium as the lubricating film are compared with the calculated results using the modified Reynolds equation considering flow slippage due to the molecular mean free path effects. This comparison confirms that the slip flow model holds true within the range of the present experiments, and that the modified Reynolds equation is applicable for designing the computer flying heads operating at such thin spacing. The reason for the excellent agreement is discussed considering the locality of rarefaction effects on the lubricating surfaces and the anisotropy of these effects between the film thickness and the slider width.


Author(s):  
B. Chetti

This work is an investigation of the performance characteristics of an offset journal bearing lubricated with a fluid with couple stresses taking into consideration the elastic deformation of the liner. The couple stresses might be expected to appear in noticeable magnitudes in liquids containing additives with large molecules. The modified Reynolds equation has been solved using the finite difference method. Load carrying capacity, attitude angle, side leakage and friction coefficients are determined for various values of couple stress parameter of a rigid and deformable bearing. It is found that, the static characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids. It is concluded that, the elastic deformation of the bearing has significant influence on the bearing characteristics.


1996 ◽  
Vol 118 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Y. B. Chang ◽  
F. W. Chambers ◽  
J. J. Shelton

The lubricating air film between two rotating rollers in close contact was studied numerically. The numerical model used in this study accounts for the effects of air compressibility, material deformation, and the slip flow which occurs when the air film thickness is not much larger than the mean-free-path of the air molecules. The air film profiles and the pressure profiles for the nip region between the rollers were calculated. It was found that the calculated air film thicknesses are lower than predicted by the liquid elastohydrodynamic calculation. From this study, equations for the minimum air film thickness, the air film thickness at the center of contact, and the amount of air that passes through the nip were obtained. This study has application to the prediction of the amount of air entrained in a winding roll.


Sign in / Sign up

Export Citation Format

Share Document