Tribological Design Decisions Using Computerized Databases

1987 ◽  
Vol 109 (3) ◽  
pp. 381-386 ◽  
Author(s):  
T. E. Tallian

Tribological knowledge is widely scattered and inconvenient of access for practicing engineers. This results in suboptimal utilization of tribological knowledge in many engineering decisions. As a remedy, ASME has embarked on a project to create a comprehensive tribology database system accessible by desktop computer. Since tribological design methodology is as important as hard data in generating optimal engineering decisions, an artificial intelligence (AI) based expert system is projected to serve as a methodology guide for the database user. This paper describes the content and structure concept of the tribology database system “entry module,” which is to comprise this expert system.

Author(s):  
Siti Nurhena ◽  
Nelly Astuti Hasibuan ◽  
Kurnia Ulfa

The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms. Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms. With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms.Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms.With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)


Work ◽  
2020 ◽  
Vol 67 (3) ◽  
pp. 557-572
Author(s):  
Said Tkatek ◽  
Amine Belmzoukia ◽  
Said Nafai ◽  
Jaafar Abouchabaka ◽  
Youssef Ibnou-ratib

BACKGROUND: To combat COVID-19, curb the pandemic, and manage containment, governments around the world are turning to data collection and population monitoring for analysis and prediction. The massive data generated through the use of big data and artificial intelligence can play an important role in addressing this unprecedented global health and economic crisis. OBJECTIVES: The objective of this work is to develop an expert system that combines several solutions to combat COVID-19. The main solution is based on a new developed software called General Guide (GG) application. This expert system allows us to explore, monitor, forecast, and optimize the data collected in order to take an efficient decision to ensure the safety of citizens, forecast, and slow down the spread’s rate of COVID-19. It will also facilitate countries’ interventions and optimize resources. Moreover, other solutions can be integrated into this expert system, such as the automatic vehicle and passenger sanitizing system equipped with a thermal and smart High Definition (HD) cameras and multi-purpose drones which offer many services. All of these solutions will facilitate lifting COVID-19 restrictions and minimize the impact of this pandemic. METHODS: The methods used in this expert system will assist in designing and analyzing the model based on big data and artificial intelligence (machine learning). This can enhance countries’ abilities and tools in monitoring, combating, and predicting the spread of COVID-19. RESULTS: The results obtained by this prediction process and the use of the above mentioned solutions will help monitor, predict, generate indicators, and make operational decisions to stop the spread of COVID-19. CONCLUSIONS: This developed expert system can assist in stopping the spread of COVID-19 globally and putting the world back to work.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shweta Banerjee

PurposeThere are ethical, legal, social and economic arguments surrounding the subject of autonomous vehicles. This paper aims to discuss some of the arguments to communicate one of the current issues in the rising field of artificial intelligence.Design/methodology/approachMaking use of widely available literature that the author has read and summarised showcasing her viewpoints, the author shows that technology is progressing every day. Artificial intelligence and machine learning are at the forefront of technological advancement today. The manufacture and innovation of new machines have revolutionised our lives and resulted in a world where we are becoming increasingly dependent on artificial intelligence.FindingsTechnology might appear to be getting out of hand, but it can be effectively used to transform lives and convenience.Research limitations/implicationsFrom robotics to autonomous vehicles, countless technologies have and will continue to make the lives of individuals much easier. But, with these advancements also comes something called “future shock”.Practical implicationsFuture shock is the state of being unable to keep up with rapid social or technological change. As a result, the topic of artificial intelligence, and thus autonomous cars, is highly debated.Social implicationsThe study will be of interest to researchers, academics and the public in general. It will encourage further thinking.Originality/valueThis is an original piece of writing informed by reading several current pieces. The study has not been submitted elsewhere.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carlos Flavián ◽  
Alfredo Pérez-Rueda ◽  
Daniel Belanche ◽  
Luis V. Casaló

PurposeThe automation of services is rapidly growing, led by sectors such as banking and financial investment. The growing number of investments managed by artificial intelligence (AI) suggests that this technology-based service will become increasingly popular. This study examines how customers' technology readiness and service awareness affect their intention to use analytical AI investment services.Design/methodology/approachThe automation of services is rapidly growing, led by sectors such as banking and financial investment. The growing number of investments managed by AI suggests that this technology-based service will become increasingly popular. This study examines how customers' technology readiness and service awareness affect their intention to use analytical AI investment services.FindingsThe results indicated that customers' technological optimism increases, and insecurity decreases, their intention to use robo-advisors. Surprisingly, feelings of technological discomfort positively influenced robo-advisor adoption. This interesting finding challenges previous insights into technology adoption and value co-creation as analytical AI puts customers into a very passive role and reduces barriers to technology adoption. The research also analyzes how consumers become aware of robo-advisors, and how this influences their acceptance.Originality/valueThis is the first study to analyze the role of customers' technology readiness in the adoption of analytical AI. The authors link the findings to previous technology adoption and automated services' literature and provide specific managerial implications and avenues for further research.


1988 ◽  
Vol 27 (01) ◽  
pp. 23-33 ◽  
Author(s):  
Fiorella de Rosis ◽  
G. Steve ◽  
C. Biagini ◽  
R. Maurizi-Enrici

SummaryThe decision process for diagnosis and treatment of Hodgkin’s disease at the Institute of Radiology of Rome has been modelled integrating the guidelines of a protocol with uncertainty aspects. Two models have been built, using a PROSPECTOR-like Expert System shell for microcomputers: the first of them treats the uncertainty by the inferential engine of the shell, the second is a probabilistic model. The decisions suggested in a group of simulated and real cases by a section of the two models have been compared with an “objective” final diagnosis; this analysis showed that, in some cases, the two models give different suggestions and that “approximations” of the shell’s inferential engine may induce wrong conclusions. A sensitivity analysis of the probabilistic model showed that the outputs are greatly influenced by variations of parameters, whose subjective estimation appears to be especially difficult. This experience gives the opportunity to consider the risks of building clinical decision models based on Expert System shells, if the assumptions and approximations hidden in the shell have not been previously analyzed in a careful and critical way.


2013 ◽  
Vol 718-720 ◽  
pp. 2422-2426
Author(s):  
Ming Gou ◽  
Jing Yang

The test database of students' health is being analyzed with the information processing tool of artificial intelligence Expert System in order to create a scientific model of students Exercise Prescription in the end. It aims at starting with studying every student to realize an optimized development for the quality potential of every student.


Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 47
Author(s):  
Nina Mauliana Noor Fajriah ◽  
Yufis Azhar ◽  
Gita Indah Marthasari

Expert system is one of the AI Development fields. AI (Artificial Intelligence) is part of a computer science which used the computer to imitate the human thoughts and behavior. The usage of a method in Expert System is very important. Thus, the most compatible method to use is the Certainty Factor method. This method is suitable to be used on Expert System to measure things and diagnosed it, will it be very sure or unsure. For example, Expert System to diagnose disease on strawberry plants. This software allows the user to diagnose the disease on strawberry plants before taking a further action. This software is using PHP programming language and store the data using MySQL system database. When the user consulting to the software, the software will show the symptoms of the disease and the user can choose the level of certainty from the chosen disease symptom. The final result from the software is a form which includes the guide of how to take the measurement of the disease based on the chosen symptoms.


Sign in / Sign up

Export Citation Format

Share Document