Thermohydrodynamic Analysis of Solid-Liquid Lubricated Journal Bearings

1988 ◽  
Vol 110 (2) ◽  
pp. 367-374 ◽  
Author(s):  
M. M. Khonsari ◽  
V. Esfahanian

Thermohydrodynamic theory is extended to include the effect of solid particles in hydrodynamically lubricated journal bearings. Appropriate governing equations and boundary conditions are derived for the fluid flow and heat transfer processes taking place in a finite journal bearing. A general computer program is developed to numerically solve the governing equations. Results are provided for biphase lubricants containing oil with molybdenum disulfide and polytetrafluoroethylene particles. The computational results are in good agreement with experimental findings. The results indicate that the bearing temperature field is affected significantly by the presence of particles in oil. Moreover, it is found that inclusion of particles in the lubricant results in a higher coefficient of friction in the mid-range of the Sommerfeld number compared to that of the clean oil.

1991 ◽  
Vol 113 (2) ◽  
pp. 63-70 ◽  
Author(s):  
C. Zhang ◽  
A. C. M. Sousa ◽  
J. E. S. Venart

A numerical procedure is developed to simulate the fluid flow and heat transfer processes in the shell-side of steam surface condensers. The governing equations are solved in primitive variable form using a semi-implicit consistent control-volume formulation in which a segregated pressure correction linked algorithm is employed. The procedure is applied to three different types of surface condenser. The numerical predictions are critically assessed by comparison to available experimental data for condensers, and in general, the solutions are in good agreement with the experimental data.


Author(s):  
Marcel Mahner ◽  
Pu Li ◽  
Andreas Lehn ◽  
Bernhard Schweizer

A detailed elasto-gasdynamic model of a preloaded three-pad air foil journal bearing is presented. Bump and top foil deflections are herein calculated with a nonlinear beamshell theory according to Reissner. The 2D pressure distribution in each bearing pad is described by the Reynolds equation for compressible fluids. With this model, the influence of the assembly preload on the static bearing hysteresis as well as on the aerodynamic bearing performance is investigated. For the purpose of model validation, the predicted hysteresis curves are compared with measured curves. The numerically predicted and the measured hysteresis curves show a good agreement. The numerical predictions exhibit that the assembly preload increases the bearing stiffness (in particular for moderate shaft displacements) and the bearing damping.


Author(s):  
D. Dowson ◽  
C. N. March

A thermohydrodynamic analysis is discussed which takes account of the general nature of the experimental observations in work which forms part of a programme of research designed to develop an improved understanding of better design procedures for journal bearings. The analysis considers compatible solutions of the Reynolds, energy, and heat conduction equations for two-dimensional conditions. It is shown that the solutions are in reasonable agreement with experimental findings. The two-dimensional solutions of the Reynolds and energy equations take full account of the variation of lubricant properties along and across the film. A very simple and approximate representation is used to estimate the temperature distribution in the bush, but the solutions present a reasonable estimate of bush and shaft temperatures. The ‘thermohydrodynamic’ or ‘heat conduction’ solution to journal bearing problems will provide intermediate, and it is hoped more realistic, results between the extreme ‘isothermal’ and ‘adiabatic’ conditions.


2010 ◽  
Vol 297-301 ◽  
pp. 618-623 ◽  
Author(s):  
S. Boubendir ◽  
Salah Larbi ◽  
Rachid Bennacer

In this work the influence of thermal effects on the performance of a finite porous journal bearing has been investigated using a thermo-hydrodynamic analysis. The Reynolds equation of thin viscous films is modified taking into account the oil leakage into the porous matrix, by applying Darcy’s law to determine the fluid flow in the porous media. The governing equations were solved numerically using the finite difference approach. Obtained result show a reduction in the performance of journal bearings when the thermal effects are accounted for and, this reduction is greater when the load capacity is significant.


Author(s):  
Dingfeng Deng ◽  
Minel J. Braun

A new model for predicting the flow behavior in long journal bearing films in the transition regime (Taylor and wavy vortex regimes) was previously proposed by the authors. This paper presents the experimental verification. A comparison between the experimental and numerical results of the Torque–Speed graphs is presented with good agreement between the numerical and experimental data for the Couette, Taylor and pre-wavy regimes. In the wavy and turbulent regime, the magnitude of the numerically obtained data is larger than the corresponding measured torques, but the difference is confined to below 14%. A comparison between experimental and numerical flow patterns is also presented. The results match well in general, except that experimentally, a pre-wavy regime was identified. The latter is characterized by the disappearance of the Taylor vortices, while numerically the Taylor vortices are only distorted and the wavy vortices are formed in this regime.


2015 ◽  
Vol 70 (5) ◽  
pp. 351-358 ◽  
Author(s):  
Chenguang Yin ◽  
Liancun Zheng ◽  
Chaoli Zhang ◽  
Xinxin Zhang

AbstractIn this article, we discuss the flow and heat transfer of nanofluids over a rotating porous disk with velocity slip and temperature jump. Three types of nanoparticles – Cu, Al2O3, and CuO – are considered with water as the base fluid. The nonlinear governing equations are reduced into ordinary differential equations by Von Karman transformations and solved using homotopy analysis method (HAM), which is verified in good agreement with numerical ones. The effects of involved parameters such as porous parameter, velocity slip, temperature jump, as well as the types of nanofluids on velocity and temperature fields are presented graphically and analysed.


Lubricants ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 61
Author(s):  
Anh T. Vo ◽  
Michel Fillon ◽  
Jean Bouyer

The lifespan of journal bearings is directly related to the operating conditions they have to face and reducing their maintenance intervals allows one to have a clear idea about their performance when issues occur. The presence of scratches on one of its surfaces degrades the performance of a journal bearing. These effects have already been assessed in experiments; however, numerical studies on this subject are still scarce. This work develops a numerical thermohydrodynamic (THD) program using the finite volume method to simulate the effects of scratches on the performance of journal bearings. To test the validity of the program, the numerical results are compared with the scientific literature and with experimental measurements conducted using the Pprime Institute journal bearing test rig. Some minor discrepancies are observed, but the overall results are in good agreement.


Volume 1 ◽  
2004 ◽  
Author(s):  
Edimilson J. Braga ◽  
Marcelo J. S. de Lemos

Detailed numerical computations for steady-state laminar natural convection within in oblique cavities totally filled with a fluid saturated porous medium is numerically analyzed using the finite volume method in a generalized coordinate system. The inclined walls are maintained at constant but different temperatures, while the horizontal walls are kept insulated. Governing equations are written in terms of primitive variables and are recast into a general form. Flow and heat transfer characteristics, (streamlines, isotherms and average Nusselt number), are investigated for Rayleigh number ranging from 103 to 104 and inclined angles ranging from 0° to 45°. In general, present results show good agreement with previous works. Analyses of important environmental and engineering flows can benefit from the derivations herein and, ultimately, it is expected that additional research on this new subject be stimulated by the work here presented.


1977 ◽  
Vol 99 (3) ◽  
pp. 167-173 ◽  
Author(s):  
C. R. Burrows ◽  
R. Stanway

A new approach is proposed to the identification of the eight linearized coefficients which characterize the dynamics of a journal bearing oil-film. The use of pseudo-random binary forcing sequences is described together with cross-correlation and multiple regression analysis. The proposed technique is demonstrated by building a computer model of a rigid rotor running in plain journal bearings, based on Ocvirk’s short-bearing approximation. Multiple regression analysis is applied to the simulated data and the governing equations are reconstructed. In this way the advantages and limitations of the method are examined under controlled conditions.


1994 ◽  
Vol 61 (2) ◽  
pp. 460-466 ◽  
Author(s):  
F. Dai ◽  
M. M. Khonsari

The continuum theory of mixture was employed to derive a generalized form of the Reynolds equation for the lubrication problems involving lubricants that contain solid particles. The derivation of the governing equations and the boundary conditions are presented. The governing equations are two coupled partial differential equations that must be solved simultaneously for the solid volume fraction and the pressure distribution in a hydrodynamic bearing. The boundary conditions allow the particles to slip at the boundary surfaces. The formulation takes the interaction between the solid and the fluid constituents into consideration. Extensive numerical results are presented for the performance parameters in finite journal bearings lubricated with granular powder mixed with Newtonian oil.


Sign in / Sign up

Export Citation Format

Share Document