Experimental Investigation of Discrete Frequency Noise Generated by Unsteady Blade Forces

1970 ◽  
Vol 92 (1) ◽  
pp. 155-164 ◽  
Author(s):  
N. J. Lipstein ◽  
R. Mani

A critical experiment was designed and carried out to study discrete frequency noise generation from an axial flow compressor row. The experiments were carried out in a small-scale Freon loop. Two arrays of rods were introduced upstream of a single compressor rotor so as to cause acoustic modes oriented approximately normal and parallel to the blade force. R. Mani’s analysis of the coupling of unsteady forces to acoustic modes was applied to these experimental results. Good agreement was obtained.

1971 ◽  
Vol 93 (4) ◽  
pp. 431-440
Author(s):  
A. N. Abdelhamid

Discrete frequency noise characteristics of a research lifting fan is investigated analytically. Based on steady aerodynamic data of the fan, unsteady aerodynamic forces acting on the rotor and stator blades were calculated using the results of previous investigators and an analysis which determines the effect of fluctuating velocity disturbance parallel to blade chord on the unsteady lift of cambered thin airfoils. The calculated unsteady forces were then used to determine the characteristics of discrete frequency noise emission from the fan. For the fan under consideration it is shown that the rotor interaction noise dominates the fan noise. Comparison between the predicted sound pressure levels and experimental observations shows good agreement. Based on the calculated detailed contributions of the different force harmonics acting on the blades to the fan noise, possible means of reducing lifting fan noise are discussed.


1985 ◽  
Vol 107 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Pan-Ming Lu¨ ◽  
Chung-Hua Wu

A set of conservative full potential function equations governing the fluid flow along a given S2 streamsurface in a transonic axial compressor rotor was obtained. By the use of artificial density and a potential function/density iteration, this set of equations can be solved, and the passage shock on the S2 streamsurface can be captured. A computer program for this analysis problem has been developed and used to compute the flow field along a mean S2 streamsurface in the DFVLR transonic axial compressor rotor. A comparison of computed results with DFVLR L2F measurement at 100 percent design speed shows fairly good agreement.


1975 ◽  
Vol 97 (2) ◽  
pp. 180-187 ◽  
Author(s):  
M. Ohtsuka

This paper deals with the deformation and the stress of an axial flow compressor rotor blade under the loading of centrifugal forces. Coupled deformation of extension, bending, torsion and transverse shear of a pretwisted curved bar with arbitrary cross section is considered. Governing equations derived by means of the principle of virtual work are solved numerically by finite difference method. The warping functions used in the analysis were obtained by the use of finite element method. Measurement of the untwist angles and the stresses were carried out for the verification of the numerical analysis and they were found to be in good agreement.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


Author(s):  
Xingen Lu ◽  
Junqiang Zhu ◽  
Chaoqun Nie ◽  
Weiguang Huang

The phenomenon of flow instability in the compression system such as fan and compressor has been a long-standing “bottle-neck” problem for gas turbines/aircraft engines. With a vision of providing a state-of-the-art understanding of the flow field in axial-flow compressor in the perspective of enhancing their stability using passive means. Two topics are covered in this paper. The first topic is the stability-limiting flow mechanism close to stall, which is the basic knowledge needed to manipulate end-wall flow behavior for the stability improvement. The physical process occurring when approaching stall and the role of complex tip flow mechanism on flow instability in current high subsonic axial compressor rotor has been assessed using single blade passage computations. The second topic is flow instability manipulation with casing treatment. In order to advance the understanding of the fundamental mechanisms of casing treatment and determine the change in the flow field by which casing treatment improve compressor stability, systematic studies of the coupled flow through a subsonic compressor rotor and various end-wall treatments were carried out using a state-of-the-art multi-block flow solver. The numerically obtained flow fields were interrogated to identify complicated flow phenomenon around and within the end-wall treatments and describe the interaction between the rotor tip flow and end-wall treatments. Detailed analyses of the flow visualization at the rotor tip have exposed the different tip flow topologies between the cases with treatment casing and with untreated smooth wall. It was found that the primary stall margin enhancement afforded by end-wall treatments is a result of the tip flow manipulation. Compared to the smooth wall case, the treated casing significantly dampen or absorb the blockage near the upstream part of the blade passage caused by the upstream movement of tip clearance flow and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of flow instability.


Author(s):  
C. Palomba ◽  
P. Puddu ◽  
F. Nurzia

Rotating stall is an unsteady phenomenon that arises in axial and radial flow compressors. Under certain operating conditions a more or less regular cell of turbulent flow develops and propagates around the annulus at a speed lower than rotor speed. Recently little work has been devoted to the understanding of the flow field pattern inside a rotating cell. However, this knowledge could be of help in the understanding of the interaction between the cell and the surrounding flow. Such information could be extremely important during the modelling process when some hypothesis have to be made about the cell behaviour. A detailed experimental investigation has been conducted during one cell operation of an isolated low-speed axial flow compressor rotor using a slanted hot wire and an ensemble average technique based on the cell revolution time. The three flow field components have been measured on 9 axial section for 800 circumferential points and on 21 radial stations to give a complete description of the flow field upstream and downstream of the rotor. Interpretation of data can give a description of the mean flow field patterns inside and around the rotating cell.


Author(s):  
Fan Lin ◽  
Fangfei Ning ◽  
Huoxing Liu

This paper presents both experimental and unsteady RANS investigations of a slot-type casing treatment at a transonic axial flow compressor rotor. Experimental results show that at 60% and 98% of rotor design wheel speeds, approximately 100% and 200% extra extensions of the rotor operation ranges are achieved, respectively. On the other hand, there are about 3.6% and 2.0% drops of efficiencies at 60% and 98% speeds respectively if comparisons are made at the same peak-efficiency mass flow rates of the solid casing case. If comparing the respective peak efficiencies for the solid casing case with those for the treated casing case, there are still about 3.4% and 0.7% drops at 60% and 98% speeds, respectively. As for the unsteady RANS study, an in-house unsteady RANS code has been used to study the casing treatment flow at several operating points, i.e., the peak efficiency and the near stall with regard to the solid casing case at 60% speed and 98% speed, respectively. It is shown that the interactions between the blade passage flow and the casing treatment flow exhibit different manner at two rotating speeds. The flow condition in which the rotor operates, i.e., either the subsonic condition at the 60% speed or the transonic condition with passage shock presented at the 98% speed, is one of the determinate factors that are responsible for the manner the casing treatment works. The loss production due to casing treatment is also particularly discussed.


1981 ◽  
Vol 103 (2) ◽  
pp. 430-437 ◽  
Author(s):  
A. J. Strazisar ◽  
J. A. Powell

A laser anemometer system employing an efficient data acquisition technique has been used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.


1977 ◽  
Vol 99 (1) ◽  
pp. 97-105 ◽  
Author(s):  
J. P. Gostelow

Measurements of the unsteady flow field over a rotor and within its wake are needed in the development of most turbomachines. The technique advocated is that of data acquisition by on-line computer, using the periodic passing of a blade as a phase reference. The phase-lock averaging process is described as is its use in reducing the noise of raw data traces. Measurements of the unsteady flow over a cascade and of the resulting boundary layer behavior are presented. The approach was used in interpreting the unsteady flow field of an axial-flow compressor rotor and the static pressure distribution over the rotor tip. Finally the application to centrifugal pumps is discussed, enabling the designer to obtain information on the suction pressures and the extent of any separated region.


Sign in / Sign up

Export Citation Format

Share Document