Simple Finite-Time Settling Control and Manipulated-Variable Softening for Reverse Reaction, Overshoot, and Oscillatory Processes

1978 ◽  
Vol 100 (1) ◽  
pp. 50-58 ◽  
Author(s):  
M. Tomizuka ◽  
D. M. Auslander ◽  
Y. Takahashi

An easily implemented digital control method based on a discrete-time process model has been extended to encompass many process types found in common industrial control problems. The system uses a controller and observer based on finite-time settling design; the controller and observer gains are computed directly (noniteratively) from the process model parameters. A softening filter which preserves the finite-time settling behavior of the closed loop system has been developed to minimize manipulated variable excursions.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Weimin Zheng ◽  
Yanxin Li ◽  
Xiaowen Jing ◽  
Shangkun Liu

The issue of adaptive practical finite-time (FT) congestion control for the transmission control protocol/active queue management (TCP/AQM) network with unknown hysteresis and external disturbance is considered in this paper. A finite-time congestion controller is designed by the backstepping technique and the adaptive neural control method. This controller guarantees that the queue length tracks the desired queue in finite-time, and it is semiglobally practical finite-time stable (SGPFS) for all the signals of the closed-loop system. At last, the simulation results show that the control strategy is effective.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoyan Qin

This paper studies the problem of the adaptive neural control for a class of high-order uncertain stochastic nonlinear systems. By using some techniques such as the backstepping recursive technique, Young’s inequality, and approximation capability, a novel adaptive neural control scheme is constructed. The proposed control method can guarantee that the signals of the closed-loop system are bounded in probability, and only one parameter needs to be updated online. One example is given to show the effectiveness of the proposed control method.


Author(s):  
Malika Sader ◽  
Fuyong Wang ◽  
Zhongxin Liu ◽  
Zengqiang Chen

This paper studies the containment control problem for a class of nonlinear multi-agent systems (MASs) with actuator faults (AFs) and external disturbance under switching communication topologies. To address this problem, a new fuzzy fault-tolerant containment control method is developed via utilizing adaptive mechanisms. Furthermore, a sufficient condition is obtained to guarantee the stability of the considered closed-loop system by the dwell time technique combined with Lyapunov stability theory. Unlike the traditional method to estimate the weight matrix, the fuzzy logic system is used to estimate the norm of weight vectors. Thus, the difficulty that the unknown nonlinear function cannot be compensated for when the actuator produces outage or stuck fault is solved. Compared with the existing controllers for nonlinear MASs, the proposed controller is more suitable for the considered problem under the influence of AFs that are detrimental to the operation of each agent system. Besides which, the closed-loop system is proven to be stable by using the developed controller, and all followers converge asymptotically to the convex hull formed by the leaders. Finally, an example based on a reduced-order aircraft model is presented to verify the effectiveness of the designed control scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhizheng Wu ◽  
Tengfei Yue ◽  
Xinxiang Jiang ◽  
Ning Cao ◽  
Feng Li ◽  
...  

Nanopositioning control as the key technology has been applied in many fields such as near-field optics, biomedical engineering, and nanomanipulation, where it is required to possess high positioning accuracy, reliability, and speed. In this paper, a switched PID controller-based fast setpoint control method is proposed for nanopositioning systems. In order to improve the setpoint speed of the nanopositioning system without a large overshoot, a switched controller consisting of the approach mode and smooth mode is synthesized. The overshoot constraint of the resulting switched closed-loop system is investigated within a set of bilinear matrix inequalities, based on which the search of the controller parameters can be further processed by solving the properly formulated synthesis algorithm. The proposed control method is evaluated in a nanopositioning experimental system driven by a PZT actuator, and the experimental results demonstrate the effectiveness of the switched PID controller for the fast setpoint approaching operation.


Author(s):  
Qian Zhang ◽  
Huaicheng Yan ◽  
Shiming Chen ◽  
Xisheng Zhan ◽  
Xiaowei Jiang

This paper is concerned with the problem of finite-time dissipative control for networked control systems by hybrid triggered scheme. In order to save network resources, a hybrid triggered scheme is proposed, which consists of time-triggered scheme and event-triggered scheme simultaneously. Firstly, sufficient conditions are derived to guarantee that the closed-loop system is finite-time bounded (FTBD) and [Formula: see text] dissipative. Secondly, the corresponding controller design approach is presented based on the derived conditions. Finally, a numerical example is presented to show the effectiveness of the proposed approach.


2004 ◽  
Author(s):  
Hunsang Jung ◽  
Youngjin Park ◽  
K. C. Park

A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop frequency information for parameter modifications to overcome the problems associated with the conventional methods employing the modal sensitivity matrix. To obtain new modal information from the closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of the closed-loop system. The present paper proposes a mode-decoupling controller that can alter a target mode while guaranteeing the stability of the closed-loop, and that can be constructed by using the measured open-loop, mode shapes. A simulation based on time domain input/output data is performed to evaluate the feasibility of the proposed control method, which is subsequently corroborated via experiments. Experimental data obtained on a beam via the proposed mode-decoupling controller have been applied to estimate thicknesses of a beam. The results show that the proposed approach outperforms conventional methods with a far less number of data set for the estimation of system parameters.


2016 ◽  
Vol 817 ◽  
pp. 111-121 ◽  
Author(s):  
Wojciech Mitkowski ◽  
Marta Zagórowska ◽  
Waldemar Bauer

In this work we will present a control method for DC system – the so-called practical PID controller, where the inertia of both the derivative and the actuator is included. The original element in this paper consists of a comparative analysis of various controller stabilizing the position of motor shaft. In a system with ideal gain, K>0 ensures asymptotic stability of the closed-loop system. Taking into account this inertia along with the inertia of the derivative, we obtain limited values 0<Kp<Kgr. A similar restrictions apply to a system with delay.


Author(s):  
Hua Chen ◽  
Chaoli Wang ◽  
Liu Yang ◽  
Dongkai Zhang

This paper investigates the semiglobal stabilization problem for nonholonomic mobile robots based on dynamic feedback with inputs saturation. A bounded, continuous, time-varying controller is presented such that the closed-loop system is semiglobally asymptotically stable. The systematic strategy combines finite-time control technique with the virtual-controller-tracked method, which is similar to the back-stepping procedure. First, the bound-constrained smooth controller is presented for the kinematic model. Second, the dynamic feedback controller is designed to make the generalized velocity converge to the prespecified kinematic (virtual) controller in a finite time. Furthermore, the rigorous proof is given for the stability analysis of the closed-loop system. In the mean time, the position and torque inputs of robots are proved to be bounded at any time. Finally, the simulation results show the effectiveness of the proposed control approach.


Author(s):  
Wenping Xue ◽  
Kangji Li

In this paper, a new finite-time stability (FTS) concept, which is defined as positive FTS (PFTS), is introduced into discrete-time linear systems. Differently from previous FTS-related papers, the initial state as well as the state trajectory is required to be in the non-negative orthant of the Euclidean space. Some test criteria are established for the PFTS of the unforced system. Then, a sufficient condition is proposed for the design of a state feedback controller such that the closed-loop system is positively finite-time stable. This condition is provided in terms of a series of linear matrix inequalities (LMIs) with some equality constraints. Moreover, the requirement of non-negativity of the controller is considered. Finally, two examples are presented to illustrate the developed theory.


2012 ◽  
Vol 182-183 ◽  
pp. 1200-1205
Author(s):  
Ye Nan Hu ◽  
Fu Chun Sun

A multi-objective robust decentralized control method is proposed for the interconnected fuzzy singularly perturbed models. Such decentralized controller can guarantee the whole closed-loop system is asymptotically stable even when the multi-time-scale subsystems are interactional. Besides, the disturbance attenuation performance, dynamic performance and control amplitude can be optimized synthetically. The simulations illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document