scholarly journals An Overshoot-Constrained Fast Setpoint Control for Nanopositioning Systems with Switched Controllers

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhizheng Wu ◽  
Tengfei Yue ◽  
Xinxiang Jiang ◽  
Ning Cao ◽  
Feng Li ◽  
...  

Nanopositioning control as the key technology has been applied in many fields such as near-field optics, biomedical engineering, and nanomanipulation, where it is required to possess high positioning accuracy, reliability, and speed. In this paper, a switched PID controller-based fast setpoint control method is proposed for nanopositioning systems. In order to improve the setpoint speed of the nanopositioning system without a large overshoot, a switched controller consisting of the approach mode and smooth mode is synthesized. The overshoot constraint of the resulting switched closed-loop system is investigated within a set of bilinear matrix inequalities, based on which the search of the controller parameters can be further processed by solving the properly formulated synthesis algorithm. The proposed control method is evaluated in a nanopositioning experimental system driven by a PZT actuator, and the experimental results demonstrate the effectiveness of the switched PID controller for the fast setpoint approaching operation.

2016 ◽  
Vol 817 ◽  
pp. 111-121 ◽  
Author(s):  
Wojciech Mitkowski ◽  
Marta Zagórowska ◽  
Waldemar Bauer

In this work we will present a control method for DC system – the so-called practical PID controller, where the inertia of both the derivative and the actuator is included. The original element in this paper consists of a comparative analysis of various controller stabilizing the position of motor shaft. In a system with ideal gain, K>0 ensures asymptotic stability of the closed-loop system. Taking into account this inertia along with the inertia of the derivative, we obtain limited values 0<Kp<Kgr. A similar restrictions apply to a system with delay.


1999 ◽  
Vol 5 (2) ◽  
pp. 121-137 ◽  
Author(s):  
Magdi S. Mahmoud ◽  
Mohamed Zribi

In this paper, the problem of designing observers and observer-based controllers for a class of uncertain systems with input and state time lags is considered. We construct delay-type observers in which both the instantaneous as well as the delayed measurements are utilized. Using feedback control based on the reconstructed state, the behavior of the closed-loop system is investigated. It is established that the uncertain time-lag system with delay observer-based control is asymptotically stable. Expressions for the gain matrices are given based on two linear-matrix inequalities. A numerical example is given to illustrate the theoretical developments.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoyan Qin

This paper studies the problem of the adaptive neural control for a class of high-order uncertain stochastic nonlinear systems. By using some techniques such as the backstepping recursive technique, Young’s inequality, and approximation capability, a novel adaptive neural control scheme is constructed. The proposed control method can guarantee that the signals of the closed-loop system are bounded in probability, and only one parameter needs to be updated online. One example is given to show the effectiveness of the proposed control method.


Author(s):  
D P Stoten ◽  
M G Dye ◽  
M Webb

The minimal control synthesis (MCS) algorithm is an adaptive control strategy that requires no prior knowledge of plant dynamic parameters, and yet is guaranteed to provide global asymptotic stability of the closed-loop system. The purpose of this paper is to present MCS as applied to web tension und transport control a class of plant that has highly non-linear dynamics and time-varying parameters. The plant is difficult to control by conventional methods over its full operating range. A typical example and model of such a plant is presented along with the implementation of MCS. Experimental comparisons of MCS with conventional control benchmarks are provided. It will be seen that MCS significantly outperforms the conventional controller.


Author(s):  
Malika Sader ◽  
Fuyong Wang ◽  
Zhongxin Liu ◽  
Zengqiang Chen

This paper studies the containment control problem for a class of nonlinear multi-agent systems (MASs) with actuator faults (AFs) and external disturbance under switching communication topologies. To address this problem, a new fuzzy fault-tolerant containment control method is developed via utilizing adaptive mechanisms. Furthermore, a sufficient condition is obtained to guarantee the stability of the considered closed-loop system by the dwell time technique combined with Lyapunov stability theory. Unlike the traditional method to estimate the weight matrix, the fuzzy logic system is used to estimate the norm of weight vectors. Thus, the difficulty that the unknown nonlinear function cannot be compensated for when the actuator produces outage or stuck fault is solved. Compared with the existing controllers for nonlinear MASs, the proposed controller is more suitable for the considered problem under the influence of AFs that are detrimental to the operation of each agent system. Besides which, the closed-loop system is proven to be stable by using the developed controller, and all followers converge asymptotically to the convex hull formed by the leaders. Finally, an example based on a reduced-order aircraft model is presented to verify the effectiveness of the designed control scheme.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yang Yang ◽  
Keyu Chen ◽  
Ping Guo

Abstract Acoustic radiation force in the near-field of a vibrating source can be utilized to lift and transport objects, which provides a noncontact driving technology in addition to maglev. This paper presents a novel design of a self-levitated planar stage based on near-field acoustic transportation. A closed-loop system is proposed to design a capacitance surface encoder to provide direct two-dimensional (2D) position feedback. A dynamic model based on the Reynolds equation is established to study its driving mechanism. A prototype including the levitation stage, encoder, and controller is implemented to demonstrate the potential of arbitrary trajectory tracking in two-dimensional space.


2004 ◽  
Author(s):  
Hunsang Jung ◽  
Youngjin Park ◽  
K. C. Park

A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop frequency information for parameter modifications to overcome the problems associated with the conventional methods employing the modal sensitivity matrix. To obtain new modal information from the closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of the closed-loop system. The present paper proposes a mode-decoupling controller that can alter a target mode while guaranteeing the stability of the closed-loop, and that can be constructed by using the measured open-loop, mode shapes. A simulation based on time domain input/output data is performed to evaluate the feasibility of the proposed control method, which is subsequently corroborated via experiments. Experimental data obtained on a beam via the proposed mode-decoupling controller have been applied to estimate thicknesses of a beam. The results show that the proposed approach outperforms conventional methods with a far less number of data set for the estimation of system parameters.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Weimin Zheng ◽  
Yanxin Li ◽  
Xiaowen Jing ◽  
Shangkun Liu

The issue of adaptive practical finite-time (FT) congestion control for the transmission control protocol/active queue management (TCP/AQM) network with unknown hysteresis and external disturbance is considered in this paper. A finite-time congestion controller is designed by the backstepping technique and the adaptive neural control method. This controller guarantees that the queue length tracks the desired queue in finite-time, and it is semiglobally practical finite-time stable (SGPFS) for all the signals of the closed-loop system. At last, the simulation results show that the control strategy is effective.


2010 ◽  
Vol 148-149 ◽  
pp. 168-171
Author(s):  
Ning Shan

The kinematics model of planar closed-loop five-bar mechanism is established in this paper. The influence of mechanism’s input parameters on the output kinematics parameters is investigated by simulation. The five-bar mechanism is designed. The experimental system of hybrid actuators five-bar mechanism is established based PID control method. The experiment investigates the influence of mechanism’s input parameters on the output kinematics parameters. The results show that the mechanism’s output kinematics parameters depend on input parameters. The original angle of input bar is bigger, curves of kinematics parameters of output bar change more acutely. Applying PID control algorithm to control the hybrid actuators linkage, the real kinematics parameters of linkage are almost consistent with theory values and the error is less.


2012 ◽  
Vol 182-183 ◽  
pp. 1200-1205
Author(s):  
Ye Nan Hu ◽  
Fu Chun Sun

A multi-objective robust decentralized control method is proposed for the interconnected fuzzy singularly perturbed models. Such decentralized controller can guarantee the whole closed-loop system is asymptotically stable even when the multi-time-scale subsystems are interactional. Besides, the disturbance attenuation performance, dynamic performance and control amplitude can be optimized synthetically. The simulations illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document