Deformation in Orthogonal Cutting

1970 ◽  
Vol 92 (1) ◽  
pp. 93-102 ◽  
Author(s):  
S. Ramalingam

This paper examines the plastic deformation process involved in chip formation during orthogonal cutting. Results of the grid deformation studies carried out on polymeric workpieces are reported. Chip formation is shown to result from the action of a curved shear surface, and it is shown that the configuration of the deformation volume during orthogonal cutting is fully determined by the orientation and curvature of the shear surface active during the cutting process. Implications of this model in metal cutting are discussed.

Author(s):  
Adinel Gavrus ◽  
Pascal Caestecker ◽  
Eric Ragneau

During the last decades, the importance of machining in manufacturing industry has required rigorous scientific studies concerning the chip formation process in order to determine optimal speeds, feeds or other technological parameters. For all types of machining including turning, milling, grinding, honing or lapping, the phenomenon of chip formation is similar in terms of the local interaction between the tool and the work piece. Because of the intensive use of CNC machine tools producing parts at ever-faster rates, it has become important to provide analysis of high speed cutting where complex loading conditions occur during the fabrication process: high gradients of the thermo-mechanical variables, strong nonlinearities of the thermo-mechanical coupling, large plastic strains, extremely high strain rates compared to that of other forming processes, important influence of the contact friction and of the microstructure evolution. Today many scientific researches are focalized on finite element analyses of the chip formation and of its morphology evolution during a high speed metals cutting process. To improve the quality of the numerical predictions, a better description of the local shear band formation is needed, using adequate rheological models. On this point of view this paper deals with the influence of the rheological behavior formulation on the morphology and geometry of the chip formation during a finite element simulation of a high speed metal cutting process. Numerical simulations of a high speed orthogonal cutting of special steels are employed to analysis the sensitivity of the numerical results describing the local cutting area with respect to different rheological laws: Norton-Hoff or Cowper-Symonds model, Johnson-Cook one or Zerilli-Armstrong formulation. To obtain a better description of the local material loadings and to take into account the important gradient of the strain rate, plastic strain and temperature values, a more adequate constitutive model is proposed by the author.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Yngve Bergström ◽  
Ylva Granbom ◽  
Dirk Sterkenburg

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a nonhomogeneity parameter, f(ε), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.


2007 ◽  
Vol 26-28 ◽  
pp. 133-136 ◽  
Author(s):  
Shotaro Tahara ◽  
Yuji Kume ◽  
Makoto Kobashi ◽  
Naoyuki Kanetake

A compressive torsion processing (CTP) was applied to hypereutectic Al-Si alloy in order to raise ductility and formability by microstructure refinement of the alloy. The CTP is a unique severe plastic deformation process and it can easily apply large strain to a work piece without change in shape. In the present work, influence of compressive torsion processing temperature on microstructure refinement and tensile property of hypereutectic Al-Si alloy is dealt with. When the CTP was applied on the Al-Si alloy, primary and eutectic Si particles were refined more effectively at lower processing temperature. Total tensile elongation of CTPed alloy was four times as large as that of non CTPed one. Distribution of the total elongation was quite uniform in the whole CTPed specimen.


2018 ◽  
Vol 211 ◽  
pp. 17007
Author(s):  
Tanel Tärgla ◽  
Jüri Olt ◽  
Olga Liivapuu

Metal cutting is a complex process in which several mechanisms are at work simultaneously. The mathematical modelling allows carrying out research into the optimization of machining conditions. This work examines the simulation of chip formation during the process of cutting. The studies demonstrated that the chip formation process, taking into account the plastic deformation and destruction of metal in the local zone, is most appropriately represented by a rheological model in the form of a series connection of elasticductile- plastic relaxing medium of Ishlinskiy (reflecting the process of primary deformation of metal from the cut off layer) and the medium of Voigt with two elastic-dissipative elements (representing the process of deformation and frictions from the convergent shaving). The attained complex rheological model served as the basis for constructing a representative dynamic model for the chip formation process. The key factors that govern the chip formation have been taken into account, such as tool vibration frequency and amplitude, depth of cut, feed rate.


Materia Japan ◽  
2003 ◽  
Vol 42 (12) ◽  
pp. 863-863 ◽  
Author(s):  
Keiichiro Ohishi ◽  
Takeshi Fujita ◽  
Kunihiro Ohashi ◽  
Kenji Kaneko ◽  
Zenji Horita

2021 ◽  
Vol 2 (1) ◽  
pp. 55-60
Author(s):  
Bahodir Qurbanovich Tilabov ◽  
◽  
Saidabbos Ikromovich Isaev ◽  
Jamshid Abdurazzokovich Sherbo’taev ◽  
Ikhtiyor Chorievich Zhurakulov

The article presents the theoretical and practical basis for the production of rolled products in the conditions of a metallurgical plant. The processes of plastic deformation of bodies between rotating drive rolls are shown. The main results of research on rolled products made of rolled steel are presented. The chemical composition, mechanical properties, macro -and microstructure parameters, and strengthening treatments of locally produced rolled steel were studied. It is shown that after hardening treatment, the strength increases and the quality of rolled products improves.Keywords:composition and properties of rolled metal products, plastic deformation process, rotating drive rollers, rolled body, rolled steel, hardening heat treatment, hardness, macro-and microstructure, performance and quality of finished products


Author(s):  
G. Giorleo ◽  
R. Teti ◽  
A. Langella ◽  
D. D’Addona ◽  
U. Prisco

Sign in / Sign up

Export Citation Format

Share Document