THEORETICAL AND PRACTICAL BASIS OF ROLLED PRODUCTS

2021 ◽  
Vol 2 (1) ◽  
pp. 55-60
Author(s):  
Bahodir Qurbanovich Tilabov ◽  
◽  
Saidabbos Ikromovich Isaev ◽  
Jamshid Abdurazzokovich Sherbo’taev ◽  
Ikhtiyor Chorievich Zhurakulov

The article presents the theoretical and practical basis for the production of rolled products in the conditions of a metallurgical plant. The processes of plastic deformation of bodies between rotating drive rolls are shown. The main results of research on rolled products made of rolled steel are presented. The chemical composition, mechanical properties, macro -and microstructure parameters, and strengthening treatments of locally produced rolled steel were studied. It is shown that after hardening treatment, the strength increases and the quality of rolled products improves.Keywords:composition and properties of rolled metal products, plastic deformation process, rotating drive rollers, rolled body, rolled steel, hardening heat treatment, hardness, macro-and microstructure, performance and quality of finished products

2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Yngve Bergström ◽  
Ylva Granbom ◽  
Dirk Sterkenburg

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a nonhomogeneity parameter, f(ε), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.


2007 ◽  
Vol 26-28 ◽  
pp. 133-136 ◽  
Author(s):  
Shotaro Tahara ◽  
Yuji Kume ◽  
Makoto Kobashi ◽  
Naoyuki Kanetake

A compressive torsion processing (CTP) was applied to hypereutectic Al-Si alloy in order to raise ductility and formability by microstructure refinement of the alloy. The CTP is a unique severe plastic deformation process and it can easily apply large strain to a work piece without change in shape. In the present work, influence of compressive torsion processing temperature on microstructure refinement and tensile property of hypereutectic Al-Si alloy is dealt with. When the CTP was applied on the Al-Si alloy, primary and eutectic Si particles were refined more effectively at lower processing temperature. Total tensile elongation of CTPed alloy was four times as large as that of non CTPed one. Distribution of the total elongation was quite uniform in the whole CTPed specimen.


Materia Japan ◽  
2003 ◽  
Vol 42 (12) ◽  
pp. 863-863 ◽  
Author(s):  
Keiichiro Ohishi ◽  
Takeshi Fujita ◽  
Kunihiro Ohashi ◽  
Kenji Kaneko ◽  
Zenji Horita

2007 ◽  
Vol 546-549 ◽  
pp. 399-402
Author(s):  
Qi Chi Le ◽  
Zi Qiang Zhang ◽  
Jian Zhong Cui

A novel way producing magnesium billets, LFEC (low frequency electromagnetic casting processing), was developed in Northeastern University in China. The high-quality magnesium billets with less macrosegregation, refined microstructure, and better surface quality were achieved because the temperature field and the flow pattern of magnesium DC casting were improved significantly after applying low frequency electromagnetic field. Extrusion is an important plastic deformation process for magnesium alloys. In this research, the magnesium billets from LFEC were extruded through a special designed die into sheets. The results of investigation on AZ31B indicated that the extrusion velocity has obvious effects on their microstructures and mechanical properties and the sheets from LFEC had finer microstructure and higher mechanical properties than that from conventional DC casting.


Sign in / Sign up

Export Citation Format

Share Document