The Effects of Diesel Fuel Properties on Performance, Smoke, and Emissions

1979 ◽  
Vol 101 (4) ◽  
pp. 524-532 ◽  
Author(s):  
G. P. Gross ◽  
K. E. Murphy

Diesel fuels were blended from selected components to provide aromatics contents from 10 to 57 percent and viscosities from 2.21 to 6.95 cSt (mm2/s) at 100°F (38°C) in a 14 fuel set which included a commercial diesel fuel as a reference fuel. Tests of the fuels were conducted under full load at several speeds and in the Federal 13-mode and smoke-cycle procedures, using a 2-stroke naturally aspirated engine and a 4-stroke turbocharged engine. Fuel properties such as viscosity, aromaticity, cetane number, gravity, distillation points, and heat of combustion, some of which were partially correlated, were examined individually and in combinations as predictors of the engine performance data. The two test engines responded similarly to fuel variables, but with some differences in sensitivity. Power output (bhp) and fuel economy (bhp-h/lb) were correlated with the heats of combustion on volume and weight bases, respectively. Smoke increased with the amount of fuel boiling above 640°F (338°C) and was not apparently affected by fuel aromatic content. Emissions of nitrogen oxides and of nitrogen oxides plus hydrocarbons increased with increasing fuel aromatics by itself or with increasing fuel specific gravity and decreasing fuel 50 percent-distillation temperature. Hydrocarbon emissions decreased with increasing viscosity or cetane number. Carbon monoxide emissions increased with increasing 90 percent-distillation temperature and with decreases in cetane number.

Author(s):  
M Canakci

Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO2 emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO x.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Dimitrios Karonis

Hydroprocessing of liquid biomass is a promising technology for the production of “second generation” renewable fuels to be used in transportation. Its products, normal paraffins, can be further hydrotreated for isomerization in order to improve their cold flow properties. The final product, usually referred to as “paraffinic diesel,” is a high cetane number, clean burning biofuel which is rapidly gaining popularity among researchers and the industry. Nevertheless, the costly isomerization step can be omitted if normal paraffins are to be directly mixed with conventional diesel in low concentrations. In this work, nonisomerized paraffinic diesel produced through hydrotreating of used cooking oil (hydrotreated used cooking oil (HUCO)) has been used in 4 blends (up to 40% v/v) with conventional diesel fuel. The blends’ properties have been assessed comparatively to European EN 590 and EN 15940 standards (concerning conventional automotive diesel fuels and paraffinic diesel fuels from synthesis or hydrotreatment, resp.). Furthermore, the HUCO blends have been used in a standard stationary diesel engine-generator set. The blends have been considered as “drop-in replacements” for standard diesel fuel. As such, no engine modifications took place whatsoever. The engine performance and exhaust emissions of steady-state operation have been examined in comparison with engine operation with the baseline conventional diesel fuel.


Author(s):  
F. Daneshvar ◽  
N. Jahani ◽  
M. B. Shafii

In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to 11% as compared to diesel fuel. In addition, the results indicate that increasing ferrofluid concentration will magnify the results. Furthermore, it was found that magnetic nanoparticles can be collected at the engine exhaust using magnetic bar.


Author(s):  

The prospects of using hydrogen as a motor fuel are noted. The problems that arise when converting a diesel engine to run on hydrogen are considered. The features of the organization of the working process of enginesrunning on hydrogen are analyzed. A method of supplying a hydrogenair mixture to a diesel engine is investigated. To supply hydrogen to the engine cylinders, it is proposed to use the Leader4M installation developed by TechnoHill Club LLC (Moscow). Experimental studies of a stationary diesel engine of the D245.12 S type with the supply of hydrogen at the inlet obtained at this installation are carried out. At the maximum power mode, the supply of hydrogen from this installation to the inlet of the diesel engine under study was 0.9 % by weight (taking into account the difference in the calorific value of oil diesel fuel and hydrogen). Such a supply of hydrogen in the specified mode made it possible to increase the fuel efficiency of the diesel engine and reduce the smoke content of exhaust gases, carbon monoxide and unburned hydrocarbon emissions. Keywords internal combustion engines; diesel engine; diesel fuel; hydrogen; hydrogenair mixture; fuel efficiency; exhaust gas toxicity indicators


2018 ◽  
Vol 21 (7) ◽  
pp. 1118-1133 ◽  
Author(s):  
Alvaro Vidal ◽  
Carlos Rodriguez ◽  
Phoevos Koukouvinis ◽  
Manolis Gavaises ◽  
Mark A McHugh

The Perturbed-Chain, Statistical Associating Fluid Theory equation of state is utilised to model the effect of pressure and temperature on the density, volatility and viscosity of four Diesel surrogates; these calculated properties are then compared to the properties of several Diesel fuels. Perturbed-Chain, Statistical Associating Fluid Theory calculations are performed using different sources for the pure component parameters. One source utilises literature values obtained from fitting vapour pressure and saturated liquid density data or from correlations based on these parameters. The second source utilises a group contribution method based on the chemical structure of each compound. Both modelling methods deliver similar estimations for surrogate density and volatility that are in close agreement with experimental results obtained at ambient pressure. Surrogate viscosity is calculated using the entropy scaling model with a new mixing rule for calculating mixture model parameters. The closest match of the surrogates to Diesel fuel properties provides mean deviations of 1.7% in density, 2.9% in volatility and 8.3% in viscosity. The Perturbed-Chain, Statistical Associating Fluid Theory results are compared to calculations using the Peng–Robinson equation of state; the greater performance of the Perturbed-Chain, Statistical Associating Fluid Theory approach for calculating fluid properties is demonstrated. Finally, an eight-component surrogate, with properties at high pressure and temperature predicted with the group contribution Perturbed-Chain, Statistical Associating Fluid Theory method, yields the best match for Diesel properties with a combined mean absolute deviation of 7.1% from experimental data found in the literature for conditions up to 373°K and 500 MPa. These results demonstrate the predictive capability of a state-of-the-art equation of state for Diesel fuels at extreme engine operating conditions.


Author(s):  
Karthik V. Puduppakkam ◽  
Chitralkumar V. Naik ◽  
Ellen Meeks

A continued challenge to engine combustion simulation is predicting the impact of fuel-composition variability on performance and emissions. Diesel fuel properties, such as cetane number, aromatic content and volatility, significantly impact combustion phasing and emissions. Capturing such fuel property effects is critical to predictive engine combustion modeling. In this work, we focus on accurately modeling diesel fuel effects on combustion and emissions. Engine modeling is performed with 3D CFD using multi-component fuel models, and detailed chemical kinetics. Diesel FACE fuels (Fuels for Advanced Combustion Engines) have been considered in this study as representative of street fuel variability. The CFD modeling simulates experiments performed at Oak Ridge National Laboratory (ORNL) [1] using the diesel FACE fuels in a light-duty single-cylinder direct-injection engine. These ORNL experiments evaluated fuel effects on combustion phasing and emissions. The actual FACE fuels are used directly in engine experiments while surrogate-fuel blends that are tailored to represent the FACE fuels are used in the modeling. The 3D CFD simulations include spray dynamics and turbulent mixing. We first establish a methodology to define a model fuel that captures diesel fuel property effects. Such a model should be practically useful in terms of acceptable computational turnaround time in engine CFD simulations, even as we use sophisticated fuel surrogates and detailed chemistry. Towards these goals, multi-component fuel surrogates have been developed for several FACE fuels, where the associated kinetics mechanisms are available in a model-fuels database. A surrogate blending technique has been employed to generate the multi-component surrogates, so that they match selected FACE fuel properties such as cetane number, chemical classes such as aromatics content, T50 and T90 distillation points, lower heating value and H/C molar ratio. Starting from a well validated comprehensive gas-phase chemistry, an automated method has been used for extracting a reduced chemistry that satisfies desired accuracy and is reasonable for use in CFD. Results show the level of modeling necessary to capture fuel-property trends under these widely varying engine conditions.


Sign in / Sign up

Export Citation Format

Share Document