Modeling of Combustion Chambers for Predicting Pollutant Concentrations

1974 ◽  
Vol 96 (3) ◽  
pp. 405-409 ◽  
Author(s):  
L. A. Kennedy ◽  
C. Scaccia

This investigation presents the results of numerically modeling the combustion processes with a combustor. This furnace model consists of a rectangular chamber with rear and forward facing steps. The fuel and oxidizer are injected from two separate inlets. The swirl produced by the oxidizer inlet vanes in the actual physical situation is also modeled. The governing elliptical equations are solved numerically using a modified Gauss-Siedel procedure. Upwind differences are employed in the nonlinear convective terms to insure stability for all the Reynolds numbers considered. A parametric study to show the influence of the inlet conditions on the interior recirculation flow was performed. The burning of methane was studied within the model combustor with particular attention focused on the formation of nitrogen oxide and carbon monoxide. Stream lines, temperature, and concentration profiles are obtained within the combustor. The effect of inlet conditions on center-line profiles is discussed.

1981 ◽  
Vol 103 (1) ◽  
pp. 34-42 ◽  
Author(s):  
J. R. Shekleton

The Radial Engine Division of Solar Turbines International, an Operating Group of International Harvester, under contract to the U.S. Army Mobility Equipment Research & Development Command, developed and qualified a 10 kW gas turbine generator set. The very small size of the gas turbine created problems and, in the combustor, novel solutions were necessary. Differing types of fuel injectors, combustion chambers, and flame stabilizing methods were investigated. The arrangement chosen had a rotating cup fuel injector, in a can combustor, with conventional swirl flame stabilization but was devoid of the usual jet stirred recirculation. The use of centrifugal force to control combustion conferred substantial benefit (Rayleigh Instability Criteria). Three types of combustion processes were identified: stratified and unstratified charge (diffusion flames) and pre-mix. Emphasis is placed on five nondimensional groups (Richardson, Bagnold, Damko¨hler, Mach, and Reynolds numbers) for the better control of these combustion processes.


2001 ◽  
Vol 435 ◽  
pp. 55-80 ◽  
Author(s):  
J. K. COMER ◽  
C. KLEINSTREUER ◽  
C. S. KIM

The flow theory and air flow structures in symmetric double-bifurcation airway models assuming steady laminar, incompressible flow, unaffected by the presence of aerosols, has been described in a companion paper (Part 1). The validated computer simulation results showed highly vortical flow fields, especially around the second bifurcations, indicating potentially complex particle distributions and deposition patterns. In this paper (Part 2), assuming spherical non-interacting aerosols that stick to the wall when touching the surface, the history of depositing particles is described. Specifically, the finite-volume code CFX (AEA Technology) with user-enhanced FORTRAN programs were validated with experimental data of particle deposition efficiencies as a function of the Stokes number for planar single and double bifurcations. The resulting deposition patterns, particle distributions, trajectories and time evolution were analysed in the light of the air flow structures for relatively low (ReD1 = 500) and high (ReD1 = 2000) Reynolds numbers and representative Stokes numbers, i.e. StD1 = 0.04 and StD1 = 0.12. Particle deposition patterns and surface concentrations are largely a function of the local Stokes number, but they also depend on the fluid–particle inlet conditions as well as airway geometry factors. While particles introduced at low inlet Reynolds numbers (e.g. ReD1 = 500) follow the axial air flow, secondary and vortical flows become important at higher Reynolds numbers, causing the formation of particle-free zones near the tube centres and subsequently elevated particle concentrations near the walls. Sharp or mildly rounded carinal ridges have little effect on the deposition efficiencies but may influence local deposition patterns. In contrast, more drastic geometric changes to the basic double-bifurcation model, e.g. the 90°-non-planar configuration, alter both the aerosol wall distributions and surface concentrations considerably.


Author(s):  
J. W. Douglas ◽  
S.-M. Li ◽  
B. Song ◽  
W. F. Ng ◽  
Toyotaka Sonoda ◽  
...  

Very little published literature documents the effects of different freestream turbulence intensities on compressor flows at realistically high Reynolds numbers. This paper presents a study of these effects on a transonic, linear, compressor stator cascade. The cascade consisted of high turning stator airfoils that had the camber of 55 degrees. The effects of freestream turbulence intensities of approximately 0.1% (baseline) and 1.6% were examined. Inlet Mach numbers to the cascade were tested from 0.55 to 0.89. Reynolds numbers, based on the inlet conditions and blade chord, varied between 1.0–2.0×106. Inlet flow angles to the cascade ranged from a choking to a stall condition. For the baseline cases, at most positive incidence angles to the cascade, surface oil flow visualization and Schlieren pictures showed a significant flow separation on the suction surface of the blade. Under these conditions, the increase in freestream turbulence from 0.1% to 1.6% significantly reduced the flow losses of the cascade (by as much as 57% in some cases). In other test conditions where no evidence depicted flow separation on the blade, there were no measurable effects on the losses due to the increase in freestream turbulence intensity. In addition, the increase of freestream turbulence intensity also improved the effective operating range of the cascade significantly (e.g., by 46% or higher).


2011 ◽  
Vol 199-200 ◽  
pp. 193-197 ◽  
Author(s):  
Cheng Cheng Zhang ◽  
Qian Wang ◽  
Zhi Xia He ◽  
Ping Jiang

In order to investigate the influence of combustion chamber geometry on spray and combustion characteristics in diesel engine, universal CFD software STAR-CD is applied to simulate the combustion processes in three different types of combustion chambers of diesel engine. The effect of combustion chamber geometry on in–cylinder air motion, temperature field and exhaust emissions are researched in this paper. Comparing with experimental results, calculation models are proved to be validity. The results show that differences of combustion chamber shape change the characteristic of flow field in cylinder, which affects the formation of mixed gas and determines the combustion and emission characteristics.


Author(s):  
Si Y. Lee ◽  
Richard A. Dimenna

The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation, the heavier benzene gas was stratified. The results demonstrated that benzene concentrations were relatively low for typical operating configurations and conditions. Detailed results and the cases considered in the calculations will be discussed here.


Author(s):  
Ruitao Song ◽  
Gerald Gentz ◽  
Guoming Zhu ◽  
Elisa Toulson ◽  
Harold Schock

A turbulent jet ignition system of a spark ignited (SI) engine consists of pre-combustion and main-combustion chambers, where the combustion in the main-combustion chamber is initiated by turbulent jets of reacting products from the pre-combustion chamber. If the gas exchange and combustion processes are accurately controlled, the highly distributed ignition will enable very fast combustion and improve combustion stability under lean operations, which leads to high thermal efficiency, knock limit extension, and near zero NOx emissions. For model-based control, a precise combustion model is a necessity. This paper presents a control-oriented jet ignition combustion model, which is developed based on simplified fluid dynamics and thermodynamics, and implemented into a dSPACE based real-time hardware-in-the-loop (HIL) simulation environment. The two-zone combustion model is developed to simulate the combustion process in two combustion chambers. Correspondingly, the gas flowing through the orifices between two combustion chambers is divided into burned and unburned gases during the combustion process. The pressure traces measured from a rapid compression machine (RCM), equipped with a jet igniter, are used for initial model validation. The HIL simulation results show a good agreement with the experimental data.


Author(s):  
Zhiguo Zhang ◽  
Mounir Ibrahim

This paper presents computational study for a large diameter (216 mm) and small space ratios (S/D = 0.25 and 0.5) jet impingement flow. CFD-ACE code was used as the computational tools; the code was first validated by comparing its predictions with both CFD and experimental data from the literature. Then, the study was performed for two different Reynolds numbers: 7600, 17700 and two different space ratios: 0.25 and 0.5. Also two different turbulence models were utilized in this study: low Reynolds number turbulent k-ε and k-ω. The CFD results were compared with flow visualization results conducted at the University of Minnesota for the same configurations. The impact of choosing different inlet conditions on the CFD flow field was examined. The k-ε model showed greater sensitivity to the selection of the inlet conditions. Moreover, the k-ω model showed much better agreement with the experimental data than the k-ε model.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Yash Joshi ◽  
B. R. Vinoth

Numerical simulations of laminar pipe and channel flows were carried out: (i) to understand the effect of inlet conditions, viz., flat inlet and streamtube inlet, on entry lengths, and (ii) to investigate the flow development in radial/transverse locations. Results show that hydrodynamic entry lengths from the streamtube inlet simulations are significantly lower compared to the entry lengths from the flat inlet simulations for low Reynolds numbers. Moreover, results from the current study (Newtonian flow with no-slip) as well as the results from the literature (non-Newtonian flow with no-slip) showed that for many flow situations, the slowest development of axial velocity in the transverse location happens to be very near to the wall. For the above cases, the existing entry length criteria (centerline as well as global entry length) are not appropriate to define the entry length. We have proposed a new entry length criterion based on the displacement thickness which is an integral measure of the velocity profile. A new entry length correlation using the displacement thickness criterion is proposed for Newtonian flows in pipe and channel based on simulations with the streamtube inlet condition.


Author(s):  
Minsin Kim ◽  
Youngwoo Kim ◽  
Sajjad Hosseini ◽  
Kyung Chun Kim

Time-resolved 2-D particle image velocimetry was used to study on turbulent flow characteristics inside an open-cell metal foam under the laminar and turbulent inlet conditions. A study on the effect of Reynolds number was conducted with different three channel Reynolds numbers, 1000, 5000 and 10000. Uniform upstream flow is divided by the pore network of metal foam and it is found that there are flow disturbances induced by metal foam structure even at a laminar inlet condition. It is confirmed that there is a similarity of the preferred flow path flows take regardless of Reynolds number.


Author(s):  
Aarthi Sekaran ◽  
Noushin Amini

Abstract The application of radially lobed nozzles has seen renewed challenges in the recent past with their roles in combustion chambers and passive flow control. The free jet flow from such nozzles has been studied for different flow conditions and compared to jets from round nozzles, verifying their improved mixing abilities. The precise mixing mechanisms of these nozzles are, however, not entirely understood and yet to be analyzed for typical jet parameters and excitation modes. The present study carries out three-dimensional Large Eddy Simulations (LES) of the flow from a tubular radially lobed nozzle to identify instability mechanisms and vortex dynamics that lead to enhanced mixing. The flow is studied at two Reynolds numbers of around 6000 and 75,000, based on the effective jet diameter. The low Reynolds number jet is compared to that from a round nozzle and experimental data to demonstrate changes in mixing mechanisms. The present simulations confirmed the presence of K-H-like modes and their evolution. The analysis also confirms the evolution of three distinct types of structures - the large-scale streamwise modes at the lobe crests, corresponding K-H structures at the troughs and an additional set of structures generated from the lobe walls. The higher Reynolds number simulations indicate changes in the mechanics with a subdued role of the lobe walls.


Sign in / Sign up

Export Citation Format

Share Document