scholarly journals PIV measurement of complex flow characteristics in open-cell metal foam replica

Author(s):  
Minsin Kim ◽  
Youngwoo Kim ◽  
Sajjad Hosseini ◽  
Kyung Chun Kim

Time-resolved 2-D particle image velocimetry was used to study on turbulent flow characteristics inside an open-cell metal foam under the laminar and turbulent inlet conditions. A study on the effect of Reynolds number was conducted with different three channel Reynolds numbers, 1000, 5000 and 10000. Uniform upstream flow is divided by the pore network of metal foam and it is found that there are flow disturbances induced by metal foam structure even at a laminar inlet condition. It is confirmed that there is a similarity of the preferred flow path flows take regardless of Reynolds number.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3566
Author(s):  
Youngwoo Kim ◽  
Chanhee Moon ◽  
Omid Nematollahi ◽  
Hyun Dong Kim ◽  
Kyung Chun Kim

Open-cell metal foams are porous medium for thermo-fluidic systems. However, their complex geometry makes it difficult to perform time-resolved (TR) measurements inside them. In this study, a TR particle image velocimetry (PIV) method is introduced for use inside open-cell metal foam structures. Stereolithography 3D printing methods and conventional post-processing methods cannot be applied to metal foam structures; therefore, PolyJet 3D printing and post-processing methods were employed to fabricate a transparent metal foam replica. The key to obtaining acceptable transparency in this method is the complete removal of the support material from the printing surfaces. The flow characteristics inside a 10-pore-per-inch (PPI) metal foam were analyzed in which porosity is 0.92 while laminar flow condition is applied to inlet. The flow inside the foam replica is randomly divided and combined by the interconnected pore network. Robust crosswise motion occurs inside foam with approximately 23% bulk speed. Strong influence on transverse motion by metal foam is evident. In addition, span-wise vorticity evolution is similar to the integral time length scale of the stream-wise center plane. The span-wise vorticity fluctuation through the foam arrangement is presented. It is believed that this turbulent characteristic is caused by the interaction of jets that have different flow directions inside the metal foam structure. The finite-time Lyapunov exponent method is employed to visualize the vortex ridges. Fluctuating attracting and repelling material lines are expected to enhance the heat and mass transfer. The results presented in this study could be useful for understanding the flow characteristics inside metal foams.


Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit Banerjee ◽  
Saurav K. Ghosh ◽  
Debopam Das

Flow field of a butterfly mimicking flapping model with plan form of various shapes and butterfly-shaped wings is studied. The nature of the unsteady flow and embedded vortical structures are obtained at chord cross-sectional plane of the scaled wings to understand the dynamics of insect flapping flight. Flow visualization and PIV experiments are carried out for the better understanding of the flow field. The model being studied has a single degree of freedom of flapping. The wing flexibility adds another degree to a certain extent introducing feathering effect in the kinematics. The mechanisms that produce high lift and considerable thrust during the flapping motion are identified. The effect of the Reynolds number on the flapping flight is studied by varying the wing size and the flapping frequency. Force measurements are carried out to study the variations of lift forces in the Reynolds number (Re) range of 3000 to 7000. Force experiments are conducted both at zero and finite forward velocity in a wind tunnel. Flow visualization as well as PIV measurement is conducted only at zero forward velocity in a stagnant water tank and in air, respectively. The aim here is to measure the aerodynamic lift force and visualize the flow field and notice the difference with different Reynolds number (Re), and flapping frequency (f), and advance ratios (J=U∞/2ϕfR).


2006 ◽  
Vol 128 (8) ◽  
pp. 784-792 ◽  
Author(s):  
Nihad Dukhan ◽  
Rubén Picón-Feliciano ◽  
Ángel R. Álvarez-Hernández

The use of open-cell metal foam in contemporary technologies is increasing rapidly. Certain simplifying assumptions for the combined conduction∕convection heat transfer analysis in metal foam have not been exploited. Solving the complete, and coupled, fluid flow and heat transfer governing equations numerically is time consuming. A simplified analytical model for the heat transfer in open-cell metal foam cooled by a low-conductivity fluid is presented. The model assumes local thermal equilibrium between the solid and fluid phases in the foam, and neglects the conduction in the fluid. The local thermal equilibrium assumption is supported by previous studies performed by other workers. The velocity profile in the foam is taken as non-Darcean slug flow. An approximate solution for the temperature profile in the foam is obtained using a similarity transform. The solution for the temperature profile is represented by the error function, which decays in what looks like an exponential fashion as the distance from the heat base increases. The model along with the simplifying assumptions were verified by direct experiment using air and several aluminum foam samples heated from below, for a range of Reynolds numbers and pore densities. The foam samples were either 5.08- or 20.32‐cm-thick in the flow direction. Reasonably good agreement was found between the analytical and the experimental results for a considerable range of Reynolds numbers, with the agreement being generally better for higher Reynolds numbers, and for foam with higher surface area density.


Author(s):  
Vasudevan Raghavan ◽  
Daniel N. Pope ◽  
George Gogos

A numerical investigation of methanol droplet combustion in a zero-gravity and low-pressure convective environment is presented. Simulations have been carried out using a predictive, transient and axisymmetric model, which includes droplet heating, liquid-phase circulation and water absorption. First, a suspended droplet (constant relative velocity) burning in an ambient of air at 300K is considered. A nearly quiescent environment (initial Reynolds number Re0=0.01) is used to impose a weak gas-phase convective flow, introducing a deviation from spherical symmetry. The resulting weak liquid-phase circulation is greatly enhanced due to surface tension effects, which create a complex, time-varying, multicellular flow pattern within the liquid droplet. The complex flow pattern, which, in the presence of surface tension, results in nearly perfect mixing, causes increased water absorption within the droplet, leading to larger extinction diameters. Surface tension effects are shown to be dominant in causing water absorption, even at initial Reynolds numbers as high as 5. Results for combustion in a nearly quiescent environment (Re0=0.01) with varying initial droplet diameters, (d0 = 0.16 to 1.72 mm), show that predictions of droplet extinction diameters, although they are still below the experimental data, do improve substantially when surface tension effects are included. Next, results for suspended droplets and for moving droplets burning in an ambient of air at 1200K, for a range of initial Reynolds numbers that are of interest in spray combustion (Re0=1-100) are presented. It is shown that, for moving droplets, due to the presence of an envelope flame at some stage during the droplet lifetime, surface tension is important over the entire range of Re0 considered; the extinction diameter decreases with increasing Re0. Extinction is not observed for a moving droplet when surface tension effects are neglected. For suspended droplets, when transition or envelope flame is present, which corresponds to Re0 less than approximately 15, surface tension is important; when an envelope flame is present (Re0 less than approximately 10), the extinction diameter increases with Re0. The variation of droplet lifetime with Re0 is much stronger for suspended droplets than for moving droplets. Depending on the Reynolds number, results on methanol droplet lifetimes and extinction diameters measured through suspended droplet experiments may not be applicable to moving droplets.


Author(s):  
Nihad Dukhan ◽  
Rube´n Pico´n-Feliciano

The use of open-cell metal foam in contemporary technologies is increasing rapidly. Certain simplifying assumptions for the combined conduction/convection heat transfer analysis in metal foam have not been exploited. Solving the complete, and coupled, fluid flow and heat transfer governing equations numerically is time consuming. A simplified analytical model for the heat transfer in open-cell metal foam cooled by a low-conductivity fluid is presented. The model assumes local thermal equilibrium between the solid and fluid phases in the foam, and neglects the conduction in the fluid. The local thermal equilibrium assumption is supported by previous studies performed by other workers. The velocity profile in the foam is taken as non-Darcean slug flow. An approximate solution for the temperature profile in the foam is obtained using a similarity transform. The solution for the temperature profile is represented by the error function, which decays in what looks like an exponential fashion as the distance from the heat base increases. The model along with the simplifying assumptions were verified by direct experiment using air and two aluminum foam samples heated from below, for a range of Reynolds numbers. Each foam sample was 5.08 cm-thick in the flow direction. One sample had a pore density of ten pores per inch while the other had twenty pores per inch. Very good agreement was found between the analytical and the experimental results for a considerable range of Reynolds number, with the agreement being generally better for higher Reynolds numbers, and for foam with higher surface area density.


Author(s):  
Vishal A. Patil ◽  
James A. Liburdy

An experimental study on the turbulent flow characteristics in a randomly packed porous bed is presented and discussed. Time resolved PIV measurements, taken in specific pore spaces are used to evaluate transitional and developed turbulent flow statistics for pore Reynolds numbers from 54 to 3964. Three different regimes of steady laminar, transitional and turbulent flow are presented. Small scale coherent vortical structures are examined, using large eddy scale (LES) decomposition, for pore Reynolds number of greater than 1000. Integral length scales were found to reach asymptotic values of approximately 0.1 times the hydraulic diameter of the bed. The integral Eulerian time scales are found to reach an asymptotic value of approximately 0.3 times the convective time scale in the bed. Mean velocity vector maps show flattening of the velocity distribution due to increased momentum mixing. Turbulent stresses show increasing level of homogeneity at higher pore Reynolds numbers.


Author(s):  
Matthew J. Golsen ◽  
Jahed Hossain ◽  
Anthony Bravato ◽  
John Harrington ◽  
Joshua Bernstein ◽  
...  

Aerodynamic unsteadiness generated upstream of the combustor basket via the complicated geometry of a modern gas turbine can lead to incomplete combustion, reduced efficiency, greater pressure drop, flashback, and reduced part life. The MidFrame section encompasses the main gas path from the compressor exit to the turbine inlet. Diffuser performance, support struts, transition pieces, and other flow obstructing geometries can lead to flow unsteadiness which can reduce performance. This study uses a combination of thermal anemometry, pressure microphone, and wall mounted accelerometer measurements to determine the primary unsteadiness frequencies and target their source. Diffuser performance is shown to have a significant impact on the downstream flow behavior. Inlet conditions are modified to provide a separated bottom wall and a fully attached compressor exit diffuser (CED) condition at an area average inlet Mach number of 0.26. Unsteadiness levels are seen to increase as a result of the separated inlet condition while the mean flow characteristics are slightly altered due to the varying exit trajectory of the main core from the CED, nevertheless the overall level of unsteadiness/turbulence is low for such a complex flow field (8 to 11 %). Results of this study can help diagnose and prevent the aforementioned issues for complicated geometries where simple flow experiments fall short.


Author(s):  
Peter W Duck

The stability of developing entry flow in both two-dimensional channels and circular pipes is investigated for large Reynolds numbers. The basic flow is generated by uniform flow entering a channel/pipe, which then provokes the growth of boundary layers on the walls, until (far downstream) fully developed flow is attained; the length for this development is well known to be (Reynolds number)×the channel/pipe width/diameter. This enables the use of high-Reynolds-number theory, leading to boundary-layer-type equations which govern the flow; as such, there is no need to impose heuristic parallel-flow approximations. The resulting base flow is shown to be susceptible to significant, three-dimensional, transient (initially algebraic) growth in the streamwise direction, and, consequently, large amplifications to flow disturbances are possible (followed by ultimate decay far downstream). It is suggested that this initial amplification of disturbances is a possible and alternative mechanism for flow transition.


Author(s):  
Mário Caruso Neto ◽  
Juan B. V. Wanderley

Flow around a pipeline near the seabed still remains relatively unknown in spite of the efforts of many researchers to understand the complicated flow around bluff bodies. The present study contributes to this discussion numerically investigating two-dimensional fluid flow around a circular cylinder near a flat plate. The investigation contemplates Reynolds numbers of 100, 180 and 7000 and a gap ratio (G/D) of 3, 0.6, 0.3 and 0.125. The flow is simulated considering a finite difference and total variation diminishing (TVD) conservative scheme with a Chimera domain division method to solve RANS equations. The k-e turbulence model is used to simulate the turbulent flow in the high Reynolds number case. Results are obtained for force coefficients and flow visualization. The results show a significant variation of flow characteristics with gap ratio and Reynolds number variation.


Sign in / Sign up

Export Citation Format

Share Document