Forced and Self-Excited Oscillations in Propellant Lines

1969 ◽  
Vol 91 (4) ◽  
pp. 671-677 ◽  
Author(s):  
W. Zielke ◽  
E. B. Wylie ◽  
R. B. Keller

Analytical techniques used to model the dynamics of propellant feed systems of rocket engines are presented as well as experimental results which provide verification. The laboratory hydraulic system, consisting of suction pipe, centrifugal pump, and discharge pipe, provides longitudinal fluid oscillations which are analyzed by use of linear methods employing a distributed parameter representation of the pipes. Of particular interest is the effect of the pump upon pressure oscillations when the pump is operating under cavitating conditions. A self-excited instability caused by the interaction between hydraulic and structural portions of the system is also described.

Author(s):  
S. M. Miner ◽  
R. D. Flack ◽  
P. E. Allaire

Two dimensional potential flow was used to determine the velocity field within a laboratory centrifugal pump. In particular, the finite element technique was used to model the impeller and volute simultaneously. The rotation of the impeller within the volute was simulated by using steady state solutions with the impeller in 10 different angular orientations. This allowed the interaction between the impeller and the volute to develop naturally as a result of the solution. The results for the complete pump model showed that there are circumferential asymmetries in the velocity field, even at the design flow rate. Differences in the relative velocity components were as large as 0.12 m/sec for the radial component and 0.38 m/sec for the tangential component, at the impeller exit. The magnitude of these variations was roughly 25% of the magnitude of the average radial and tangential velocities at the impeller exit. These asymmetries were even more pronounced at off design flow rates. The velocity field was also used to determine the location of the tongue stagnation point and to calculate the slip within the impeller. The stagnation point moved from the discharge side of the tongue to the impeller side of the tongue, as the flow rate increased from below design flow to above design flow. At design flow, values of slip ranged from 0.96 to 0.71, from impeller inlet to impeller exit. For all three types of data (velocity profiles, stagnation point location, and slip factor) comparison was made to laser velocimeter data, taken for the same pump. At the design flow, the computational and experimental results agreed to within 17% for the velocity magnitude, and 2° for the flow angle. The stagnation point locations coincided for the computational and experimental results, and the values for slip agreed to within 10%.


1999 ◽  
Vol 121 (3) ◽  
pp. 291-295 ◽  
Author(s):  
S. Bolpaire ◽  
J. P. Barrand

The operational range and the performances of pumps are limited by the occurrence of backflow and prerotation in the suction pipe as the flow rate is reduced. This paper presents the study of static pressure measurements and visualizations in the suction pipe, near the inlet of a centrifugal pump, at partial flow rates, in steady conditions, and during a fast start-up of the pump. The tests were carried out in water on the DERAP© test loop of the ENSAM Lille laboratory. Standard methods allowed to determine the recirculation critical flow rate. A visualization method showed that the axial extent of the recirculation and the prerotation with the flow rate is considerably reduced during a fast start-up compared to steady conditions.


2018 ◽  
Vol 38 (2) ◽  
pp. 527-543 ◽  
Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Zhiwei Li ◽  
Ao Xu ◽  
Chang Xu ◽  
...  

To provide a comprehensive understanding of the pressure fluctuation–vortex interaction in non-cavitation and cavitation flow, in this article, the unsteady flow in an ultra-low specific-speed centrifugal pump was investigated by numerical simulation. The uncertainty of the numerical framework with three sets of successively refined mesh was verified and validated by a level of 1% of the experimental results. Then, the unsteady results indicate that the features of the internal flow and the pressure fluctuation were accurately captured in accordance with the closed-loop experimental results. The detailed pressure fluctuation at 16 monitoring points and the monitoring of the vorticity suggest that some inconsistent transient phenomena in frequency spectrums show strong correlation with the evolution of vortex, such as abnormal increasing amplitudes at the monitoring points near to the leading edge on the suction surface and the trailing edge on the pressure surface in the case of lower pressurization capacity of impeller after cavitation. Further analysis applies the relative vortex transport equation to intuitionally illustrate the pressure fluctuation–vortex interaction by the contribution of baroclinic torque, viscous diffusion and vortex convection terms. It reveals that the effect of viscous diffusion is weak when the Reynolds number is much greater than 1. Pressure fluctuation amplitude enlarges on the suction side of blade near to the leading edge due to the baroclinic torque in cavitation regions, whereas the abnormal increase of pressure fluctuation after cavitation on the pressure surface of blade approaching the trailing edge results from the vortex convection during vortices moving downstream with the decrease of available net positive suction head at the same instance.


1972 ◽  
Vol 94 (1) ◽  
pp. 15-20 ◽  
Author(s):  
M. E. Franke ◽  
A. J. Malanowski ◽  
P. S. Martin

Experimental results are presented to show the effects of temperature, flow, end-conditions, and branching on the small-signal sinusoidal amplitude frequency response of pneumatic lines. Distributed parameter transmission line theory for uniform lines is extended to include varying conditions of pressure and temperature along the line as well as series-connected lines of different diameters and parallel branching. The experimental results are compared with the formulated theory for several test configurations. Agreement between experiment and computer solutions based on the theory is relatively good.


Author(s):  
F.-K. Benra ◽  
H. J. Dohmen ◽  
M. Sommer

The composition of sewage water with partially large portions of fibers and solids requires a special pump design, in order to avoid operational disturbances by clogging. In most applications for sewage water transport, single-stage pumps with single-blade impellers are used. With this special impeller geometry largest flow channels can be realized. So fibers and solids up to an appropriate size can be transported by the pump. This minimum impeller blade number however brings disadvantages for pump operation. The development of a pressure and a suction surface of the blade gives an asymmetric pressure distribution at the perimeter of the rotor outlet and a periodically unsteady flow field arises. In a numerical approach the time accurate flow in a single-blade centrifugal pump has been calculated by solving the 3-dimensional time dependent Reynolds averaged Navier-Stokes equations (URANS) in a wide range of pump operation. The investigation of the flow included all details between suction flange and pressure flange of the pump. The numerical results show a strong dependence from impeller position for all flow parameters. For the investigated operating points strong vortices have been obtained at particular impeller positions. Experimental results have been used to verify the numerical results of time dependent flow in the single-blade pump. The computed flow field has been compared to results which were obtained from optical measurements of flow velocities by Particle Image Velocimetry at different impeller positions. A very good qualitative agreement between measurements and calculations has been obtained for all investigated operating points.


2016 ◽  
Vol 856 ◽  
pp. 105-115
Author(s):  
E.D. Metaxa ◽  
K. Berkesi ◽  
D. Musmarra ◽  
Athanasios G. Mamalis ◽  
Evangelos Hristoforou

The aim of this study is to describe the synthetic procedure of superparamagnetic nanoparticles of magnetite and maghemite and to use the magnetic merit of thesenano-sized ferrite particles coated byorganic substances having good water solubility to desalinate saline water. The idea derives from the experimental results of research groups using magnetic particles covered by polymers to increase the efficiency of membranes in forward osmosis desalination plants. The magnetic particles can beseparatedfrom water by an external magnet field easily.As magnetic particles, Fe3O4 can be prepared in different sizes from nanoto microscale by the help of co-precipitation or thermal decomposition techniques. These superparamagnetic nanoparticles are well-promising candidates for use in desalination purposes either from own or after their fabrication with polymer molecules, such as cyclodexrins, in their original form or in a modified one in order to enhance their water solubility, according to some preliminary experimental results found by our research team but not referred here. Herein, various inexpensive synthetic routes for superparamagnetic nanoparticles of magnetite (Fe3O4) and maghemite ( -Fe2O3) are described, as well as the characterization results of the produced nanoparticles with XRD, TEM, FT-IR, RAMAN, DFT and TGA/DTG analytical techniques are also referred.


Author(s):  
Teiichi Tanaka

The thermodynamic effect which affects the cavitation performance of a cavitating centrifugal pump was investigated experimentally using liquid nitrogen. To measure the pump cavitation performance, a test setup which could carry out experiments using both liquid nitrogen and cold water was constructed. The test setup consisted of a suction tank, a test pump, a mass flow meter, a ball valve and pipes. Vacuum-insulated pipes were used. The test pump was a centrifugal type magnetic pump, and two impellers, which differed in cavitation performance, were used in experiments. Cavitation performance using liquid nitrogen or cold water could be obtained from the measurement of the pump suction and delivery pressure, the pump suction and delivery temperature, and the discharge flow rate. And an improvement in pump cavitation performance could be seen when comparing the experimental results from using liquid nitrogen with those from using cold water. The experimental results indicated that cavitation performance using liquid nitrogen was better than that using cold water. This improvement in cavitation performance was thought to be due to the thermodynamic effect of cavitation. And the estimated temperature depression due to the thermodynamic effect decreased with a decreasing flow coefficient. Moreover, it was shown that the estimated temperature depression due to the thermodynamic effect on the low cavitation performance impeller was larger than that on the high cavitation performance impeller at the same flow coefficient.


Author(s):  
Kirk W. Dotson ◽  
Brian H. Sako ◽  
Daniel R. Morgenthaler

In structural modeling of launch vehicles, liquid propellant is sometimes rigidly attached to feedline walls. This assumption precludes the interaction of structural modes with propellant pressure and flow. An analysis of fluid-structure interaction (FSI) for the Atlas V launch vehicle revealed that structural models with rigidly-attached propellant yield unconservative response predictions under some conditions. In particular, during the maximum acceleration time of flight, pressure oscillations acting at bends in the Atlas V liquid oxygen (LO2) feedline excite 15–20 Hz structural modes that have considerable gain on the feedline and at the spacecraft interface. The investigation also revealed that the venting of gas from the pogo accumulator is an excitation source and changes the dynamic characteristics of the hydraulic system. The FSI simulation produced during the investigation can be adapted to mission-specific conditions, such that responses and loads are conservatively predicted for any Atlas V flight.


Sign in / Sign up

Export Citation Format

Share Document