Prediction of the One-Dimensional Equilibrium Cutting Gap in Electrochemical Machining

1969 ◽  
Vol 91 (3) ◽  
pp. 755-763 ◽  
Author(s):  
J. Hopenfeld ◽  
R. R. Cole

In electrochemical machining the evolution of gas and heat in the electrolyte results in local variation of the gap between the electrodes. The ability to predict these variations for any given operating condition is a prerequisite of proper design of the cathode tool. This paper provides analytical predictions of the change in gap geometry for the one-dimensional steady-state case. Employing the basic conservation laws, a system of coupled nonlinear differential equations is derived for the gas-electrolyte mixture which flows between the electrodes. The assumption of homogeneity of the two-phase mixture is employed throughout the analysis. Numerical results from the solution of the equations are presented graphically and compared with experimental data. The local variation in gap and the relation between current, gap, and applied voltage compare favorably with the experimental data within the ranges of parameters investigated: current density 45–400 amps per sq in., electrolyte flow rate 0.22–0.98 gpm, entrance gap size 0.015–0.020 in., potassium chloride electrolyte normality 0.67–1.14.

1976 ◽  
Vol 98 (2) ◽  
pp. 431-437 ◽  
Author(s):  
F. Fluerenbrock ◽  
R. D. Zerkle ◽  
J. F. Thorpe

A set of six equations, which are based on the ECM model developed by Thorpe and Zerkle, can be solved numerically to yield the one-dimensional distributions of pressure, temperature, gas density, gap thickness, void fraction, and electrolyte velocity in the rectilinear ECM frontal gap under equilibrium conditions. The validity of the model, which also applies to radial flow geometries, is confirmed by comparing experimental pressure and gap profiles with theoretical predictions. It is shown that for a given set of operating parameters there is a minimum supply pressure below which no machining is possible. When machining steel with an aqueous NaCl electrolyte the deposition of a black smut (Fe(OH)2) occurs beyond a certain smut-free entrance length, which was experimentally found to be proportional to the inlet gap thickness.


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.


1986 ◽  
Vol 108 (4) ◽  
pp. 486-488 ◽  
Author(s):  
E. D. Doss ◽  
M. G. Srinivasan

The empirical expressions for the equivalent friction factor to simulate the effect of particle-wall interaction with a single solid species have been extended to model the wall shear stress for multispecies solid-gas flows. Expressions representing the equivalent shear stress for solid-gas flows obtained from these wall friction models are included in the one-dimensional two-phase flow model and it can be used to study the effect of particle-wall interaction on the flow characteristics.


Author(s):  
H Hardisty ◽  
A R Mileham ◽  
H Shirvani

A theoretical and computational investigation into the electrochemical machining (ECM) process for the case of a moving stepped tool eroding an initially flat surface is presented. Five parametric variations of the basic geometry of the stepped tool machining process are possible, depending on the relative distance between the moving tool and eroded work. For each of the five cases, and based on one-dimensional theory, formulae have been developed to predict the minimum depth of working material that must initially be provided to enable a particular step size to be machined to a specified tolerance. The computer simulation of the ECM process which has been developed is based on the finite element method (FEM). The geometry of tool, electrolyte and work is simulated by means of a two-dimensional mesh of square elements. A system of macros has been developed which interact internally with an FE package to move component boundaries systematically to simulate both tool movement and surface erosion. Such boundary movements are accomplished automatically and continuously without user intervention during a simulation run. The algorithms employed to achieve characteristically different erosion rates are described. Results both from one-dimensional ECM theory and from the computer simulations of the characteristic cases are presented. Comparisons show that there is good agreement between computer predictions and theory. The differential erosion process is fundamental to all ECM processes. Complex shapes evolve because of spatial differences in erosion rates. Thus the one-dimensional results presented here for the formation of a step should provide a basis for comparisons between spatially separated regions of one-dimensional differential erosion on bodies of arbitrary shape.


2003 ◽  
Vol 125 (2) ◽  
pp. 387-389 ◽  
Author(s):  
Jin Ho Song

A linear stability analysis is performed for a two-phase flow in a channel to demonstrate the feasibility of using momentum flux parameters to improve the one-dimensional two-fluid model. It is shown that the proposed model is stable within a practical range of pressure and void fraction for a bubbly and a slug flow.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5863
Author(s):  
Massimo Cardone ◽  
Bonaventura Gargiulo

This paper presents a virtual model of a scroll compressor developed on the one-dimensional analysis software Simcenter Amesim®. The model is semi-empirical: it needs some physical details of the modelled machine (e.g., the cubic capacity), but, on the other hand, it does not require the geometrical features of the spirals, so it needs experimental data to calibrate it. The model also requires rotational speed and the outlet temperature as boundary conditions. The model predicts the power consumption and the mass flow rate and considers leakages and mechanical losses. After the model presentation, this paper describes the test bench and the obtained data used to calibrate and validate the model. At last, the calibration process is described, and the results are discussed. The calculated values fit the experimental data also in extrapolation, despite the model is simple and performs calculations within 7 s. Due to these characteristics, the model is suitable for being used in a larger model as a sub-component.


Sign in / Sign up

Export Citation Format

Share Document