Numerical Modeling of the Failure of Magnesium Tubes Under Compressive Loading

Author(s):  
Jonathan Rossiter ◽  
Kaan Inal ◽  
Raja Mishra

A new finite element (FE) specific failure criterion utilizing hardening rates to quantify bending stress is implemented into the MAT_124 material model in the commercial software LS-DYNA to simulate fracture of extruded AZ31 and cast AM60 magnesium alloy tubes. The simulations are performed by requiring element erosion of hexahedral solid elements in a three-dimensional (3D) FE model when the failure criterion is satisfied at any point in the simulation. Experimental stress–strain curves from tensile and compression tests of the materials are used as inputs in the model. The simulations reproduce the measured load displacement data as well as general features of the experimental failure modes of round and rectangular tubes undergoing axial crush tests. The model is applied to investigate the effects of a variety of design features, such as varying tube wall thickness, preformed bulges, alternate bands of Al and Mg alloys, and cladding Al on magnesium, on the macroscopic strain to failure. The results show that adding multiple preformed bulges to the tubes can increase the strain to failure and reduce the force required to cause deformation. Adding a single bulge concentrates the strain causing reduced macroscopic strain to failure. Placing sections of reduced wall thickness or brazing in sections of aluminum causes stress concentrations which reduce the macroscopic strain to failure. Cladding aluminum onto the outside of the magnesium tube is shown to improve strain to failure.

Author(s):  
Marzieh Azarnoosh ◽  
Marcus Stoffel ◽  
Dieter Weichert

Over the last several decades investigations of replacement material for intervertebral disc (IVD) have been an important topic in medical research. The challenge is to create materials whose mechanical behavior ideally matches that of the articular cartilage comprising the native discs. Thus, the study of articular cartilages underlying mechanical characteristics is a key issue for the successful development and refinement of replacement materials. Using both experimental and cartilage histostructural data, including fiber orientation, a visco-hyperelastic-diffusion (VHD) material model is developed and implemented. This allows us to numerically study the mechanical behavior of an IVD consisting of a cartilaginous ring surrounding a fluid core. In this work, a three dimensional finite element (FE) model is developed to simulate the behavior of an IVD under various loading conditions. Finally, model parameters are iteratively determined by comparing the simulation results to compression tests on corresponding discs performed in a MTS machine with a tempered nutrient solution.


Author(s):  
Idris A. Musa

Steel tubular structural members are being widely used in various engineering structures. The steel tubular joints will have fatigue problem when subjected to repetitive loading. Fatigue strength is one of the key factors that control the design of steel tubular joints in structures subjected to frequent loading. Research has shown that concrete filling of the steel tubes can effectively reduce stress concentrations at the joint. In this study, the structural stress method which involves the through-thickness stress distribution, has been employed to estimate the fatigue life of concrete filled steel tubular (CFST) T-joints under axial loading in the brace. A Finite Element (FE) model has been developed using ABAQUS. The three-dimensional 8-node hexahedral element has been employed in the FE model. The structural stresses have been extracted and the fatigue life of the joint has been estimated. The results have been verified using experimental results reported in the literature. The current study showed that the structural stress method can effectively predict reliable fatigue life in concrete filled steel tubular (CFST) T-joints.


2016 ◽  
Vol 2016 ◽  
pp. 1-21
Author(s):  
Hao Wang ◽  
Yuan Sheng Cheng ◽  
Jun Liu ◽  
Lin Gan

Lightweight sandwich structures with highly porous 2D cores or 3D (three-dimensional) periodic cores can effectively withstand underwater explosion load. In most of the previous studies of sandwich structure antiblast dynamics, the underwater explosion (UNDEX) bubble phase was neglected. As the UNDEX bubble load is one of the severest damage sources that may lead to structure large plastic deformation and crevasses failure, the failure mechanisms of sandwich structures might not be accurate if only shock wave is considered. In this paper, detailed 3D finite element (FE) numerical models of UNDEX bubble-LCSP (lightweight corrugated sandwich plates) interaction are developed by using MSC.Dytran. Upon the validated FE model, the bubble shape, impact pressure, and fluid field velocities for different stand-off distances are studied. Based on numerical results, the failure modes of LCSP and the whole damage process are obtained. It is demonstrated that the UNDEX bubble collapse jet local load plays a more significant role than the UNDEX shock wave load especially in near-field underwater explosion.


2007 ◽  
Vol 353-358 ◽  
pp. 1948-1951 ◽  
Author(s):  
Xi Tao Zheng ◽  
Qin Sun ◽  
Ying Nan Guo ◽  
Ya Nan Chai

Load response and failure modes of three-dimensional (3-d) four-directional braided composite lugs were studied analytically and experimentally. The objective of the study was to get information on the stiffness, strength and failure mode of the lug, as well as on the applicability of the analysis method used to predict lug load response and failure. The test lugs were manufactured with the RTM (Resin Transfer Molding) technique. The test specimens were loaded parallel to the lug centerline. Two types of specimens were tested to failure. Three of them were instrumented with 18 strain gages in each type of lug. There are three basic failure modes in braided composite joints: net-tension, shear-out, and bearing. Net-tension failure is associated with matrix and fiber tension failure due to stress concentrations. Shear-out and bearing failures result primarily from the shear and compression failures of fiber and matrix. The analyses were performed using finite element method. Shell elements were used. A steel pin was modeled to apply the loading. The loading was applied with a constant force distribution through the center of the pin. A contact was defined between the pin and the surrounding lug surface. The measured strains showed fairly good correlation with the analysis results. The strain response was almost linear. It can be concluded that with correct material properties the FE approach used in the analyses can provide a reasonable estimate for the load response and failure of 3-d braided composite lugs


Author(s):  
Jose´ Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests carried out at COPPE/UFRJ are also described. In these tests, a typical 4″ flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all obtained results points that the proposed FE model is efficient to estimate the response of flexible pipes to axial compression and, furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


Author(s):  
Alireza Kohandehghan ◽  
Jonathan Prescott ◽  
Stuart Guest ◽  
Sean Lepine

Abstract Arc burns, also known as arc strikes, are caused by momentary interaction of an electric arc, e.g., welding electrode or welding ground clamp, and a pipe or fitting, upon which a minimal or no amount of weld metal is deposited. Arc burns typically correspond with localized alteration of microstructures, shallow pitting, sharp surface contours, re-melting, and/or cracking. The damaged microstructures manifest in the form of a locally harder material due to accelerated cooling rates. Arc burns mainly form during the pipeline construction and are typically located adjacent to manually installed girth welds. The hard microstructures associated with arc burns are susceptible to hydrogen-induced cracking (HIC) in the presence of atomic hydrogen. Pipeline maintenance codes consider arc burns as defects and require their complete removal by grinding. Due to the relatively small dimension of arc burns, removal by grinding followed by etching contrast test is often the simplest and most reliable permanent repair for such defects. However, in some circumstances grinding to the maximum allowable depth may not completely remove the affected microstructures. Also, removal of arc burns often requires grinding near girth welds and significant grinding depths may require through-thickness inspection of the welds to ensure safety. Type B pressure containing steel sleeves are another permanent repair method that can be used to repair arc burns or partially removed arc burns within grinding metal loss features. Installation of permanent repairs over an arc burn is costly and may introduce additional or higher risks to the integrity of pipeline when scarce industry studies are available that conclusively demonstrate the dangers of leaving arc burns or partially removed arc burns in pipes. Despite the need, there is no validated engineering assessment method for the evaluation of arc burns. This paper will summarize an engineering assessment methodology and the findings of the evaluation of crack-free arc burns and partially removed arc burn features for two scenarios on vintage liquid pipelines. A combination of one- and three-dimensional finite element models was utilized to investigate the effect of arc burns and/or partially removed arc burns on the integrity of the pipeline based on plastic collapse, local yielding, and fatigue failure modes. The effect of the buried pipeline profile and soil was considered in the assessment of the axial load capacity of the pipeline. The geometrical and metallurgical stress concentrations of the features were considered in the engineering assessment. The engineering assessment determined if the pipeline with the arc burns and/or partially removed arc burns can survive rupture, brittle fracture, and fatigue damage mechanisms during its operation and if reinforcement of the area or cut-out is required.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed M. Sayed ◽  
Hesham M. Diab

Reinforced concrete (RC) columns often require consolidation or rehabilitation to enhance their capacity to endure the loads applied. This paper aims at studying the conduct and capacity of RC square columns, those reinforced with steel jacketing under static preloads. For this purpose, a three-dimensional model of finite element (FE) is devised mainly to investigate and analyze the effect of this case. The model was tested and adjusted to ensure its accuracy using the previous experimental results obtained by the author. Results of testing, experimentally, the new developed FE model revealed the ability to use the model for calculating RC columns’ axial load capacity and for predicting accurate failure modes. The new model that tends to predict the axial load capacity was suggested considering the parametric analysis results.


Author(s):  
José Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests are also described. In these tests, a typical 4 in. flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all results points out that the proposed FE model is effective to estimate the response of flexible pipes to axial compression and; furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


2008 ◽  
Vol 1097 ◽  
Author(s):  
Elaheh Ghassemieh

AbstractPorous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.


2021 ◽  
Author(s):  
Fernando Geremias Toni ◽  
Rodrigo Provasi ◽  
Clóvis de Arruda Martins

Abstract To correctly model the structural behavior of a flexible pipe, the contribution of all the layers must be completely understood, among them the interlocked carcass. That carcass is a metallic layer designed to provide radial stiffness to a flexible pipe, mainly supporting pressure differentials and thus preventing failure modes such as collapse and crushing, but its behavior under other loads is worth of investigation. This paper contributes to understanding the carcass behavior under tension. Given its complex helical and interlocked geometry, modelling the carcass through the Finite Element Method is a challenging task, not only due to the large size of the models, but also due to the nonlinearities and convergence difficulties that arise from the self-contacts at the interlocking. For these reasons, most works developed over the past decades have adopted an equivalent layer approach, in which the carcass is replaced by an orthotropic cylindrical layer with equivalent mechanical properties. Although practical, this approach disregards the effects from the interlocking, such as stiffness variations and stress concentrations. Therefore, aiming a more realistic representation and a better understanding of the mechanical behavior of the interlocked carcass, this work presents four different carcass finite element models to analyze this layer under tension loads. The first one is a complete three-dimensional finite element model of an interlocked carcass discretized with second order isoparametric solid elements and surface-to-surface contact elements. The second model consists of a version of the first one with the addition of an inner polymeric sheath. As for the third and fourth models, it was adopted the simplifying ring hypothesis, that is, a carcass with 90 degree lay angle, thus allowing the axisymmetric modelling of the two previous configurations, representing a substantial computational gain by using two-dimensional meshes. The results of those models are then presented and compared, and the validity of the adopted simplifying hypothesis is verified.


Sign in / Sign up

Export Citation Format

Share Document