An Engineering Assessment Methodology to Evaluate Arc Burns

Author(s):  
Alireza Kohandehghan ◽  
Jonathan Prescott ◽  
Stuart Guest ◽  
Sean Lepine

Abstract Arc burns, also known as arc strikes, are caused by momentary interaction of an electric arc, e.g., welding electrode or welding ground clamp, and a pipe or fitting, upon which a minimal or no amount of weld metal is deposited. Arc burns typically correspond with localized alteration of microstructures, shallow pitting, sharp surface contours, re-melting, and/or cracking. The damaged microstructures manifest in the form of a locally harder material due to accelerated cooling rates. Arc burns mainly form during the pipeline construction and are typically located adjacent to manually installed girth welds. The hard microstructures associated with arc burns are susceptible to hydrogen-induced cracking (HIC) in the presence of atomic hydrogen. Pipeline maintenance codes consider arc burns as defects and require their complete removal by grinding. Due to the relatively small dimension of arc burns, removal by grinding followed by etching contrast test is often the simplest and most reliable permanent repair for such defects. However, in some circumstances grinding to the maximum allowable depth may not completely remove the affected microstructures. Also, removal of arc burns often requires grinding near girth welds and significant grinding depths may require through-thickness inspection of the welds to ensure safety. Type B pressure containing steel sleeves are another permanent repair method that can be used to repair arc burns or partially removed arc burns within grinding metal loss features. Installation of permanent repairs over an arc burn is costly and may introduce additional or higher risks to the integrity of pipeline when scarce industry studies are available that conclusively demonstrate the dangers of leaving arc burns or partially removed arc burns in pipes. Despite the need, there is no validated engineering assessment method for the evaluation of arc burns. This paper will summarize an engineering assessment methodology and the findings of the evaluation of crack-free arc burns and partially removed arc burn features for two scenarios on vintage liquid pipelines. A combination of one- and three-dimensional finite element models was utilized to investigate the effect of arc burns and/or partially removed arc burns on the integrity of the pipeline based on plastic collapse, local yielding, and fatigue failure modes. The effect of the buried pipeline profile and soil was considered in the assessment of the axial load capacity of the pipeline. The geometrical and metallurgical stress concentrations of the features were considered in the engineering assessment. The engineering assessment determined if the pipeline with the arc burns and/or partially removed arc burns can survive rupture, brittle fracture, and fatigue damage mechanisms during its operation and if reinforcement of the area or cut-out is required.

Author(s):  
Gurumurthy Kagita ◽  
Gudimella G. S. Achary ◽  
Mahesh B. Addala ◽  
Balaji Srinivasan ◽  
Penchala S. K. Pottem ◽  
...  

Abstract Mechanical damage in subsea pipelines in the form of local dents / buckles due to excessive bending deformation may severely threaten their structural integrity. A dent / buckle has two significant effects on the pipeline integrity. Notably, residual stresses are set up as result of the plastic deformation and stress concentrations are created due to change in pipe geometry caused by the denting / buckling process. To assess the criticality of a dent / buckle, which often can be associated with strain induced flaws in the highly deformed metal, integrity assessment is required. The objective of this paper is to evaluate the severity of dent / buckle in a 48” subsea pipeline and to make the rerate, repair or replacement decision. This paper presents a Level 3 integrity assessment of a subsea pipeline dent / buckle with metal loss, reported in in-line inspection (ILI), in accordance with Fitness-For-Service Standard API 579-1/ASME FFS-1. In this paper, the deformation process that caused the damage (i.e. dent / buckle) with metal loss is numerically simulated using ILI data in order to determine the magnitude of permanent plastic strain developed and to evaluate the protection against potential failure modes. For numerical simulation, elastic-plastic finite element analyses (FEA) are performed considering the material as well as geometric non-linearity using general purpose finite element software ABAQUS/CAE 2017. Based on the numerical simulation results, the integrity assessment of dented / buckled subsea pipeline segment with metal loss has been performed to assess the fitness-for-service at the operating loads.


2007 ◽  
Vol 353-358 ◽  
pp. 1948-1951 ◽  
Author(s):  
Xi Tao Zheng ◽  
Qin Sun ◽  
Ying Nan Guo ◽  
Ya Nan Chai

Load response and failure modes of three-dimensional (3-d) four-directional braided composite lugs were studied analytically and experimentally. The objective of the study was to get information on the stiffness, strength and failure mode of the lug, as well as on the applicability of the analysis method used to predict lug load response and failure. The test lugs were manufactured with the RTM (Resin Transfer Molding) technique. The test specimens were loaded parallel to the lug centerline. Two types of specimens were tested to failure. Three of them were instrumented with 18 strain gages in each type of lug. There are three basic failure modes in braided composite joints: net-tension, shear-out, and bearing. Net-tension failure is associated with matrix and fiber tension failure due to stress concentrations. Shear-out and bearing failures result primarily from the shear and compression failures of fiber and matrix. The analyses were performed using finite element method. Shell elements were used. A steel pin was modeled to apply the loading. The loading was applied with a constant force distribution through the center of the pin. A contact was defined between the pin and the surrounding lug surface. The measured strains showed fairly good correlation with the analysis results. The strain response was almost linear. It can be concluded that with correct material properties the FE approach used in the analyses can provide a reasonable estimate for the load response and failure of 3-d braided composite lugs


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed M. Sayed ◽  
Hesham M. Diab

Reinforced concrete (RC) columns often require consolidation or rehabilitation to enhance their capacity to endure the loads applied. This paper aims at studying the conduct and capacity of RC square columns, those reinforced with steel jacketing under static preloads. For this purpose, a three-dimensional model of finite element (FE) is devised mainly to investigate and analyze the effect of this case. The model was tested and adjusted to ensure its accuracy using the previous experimental results obtained by the author. Results of testing, experimentally, the new developed FE model revealed the ability to use the model for calculating RC columns’ axial load capacity and for predicting accurate failure modes. The new model that tends to predict the axial load capacity was suggested considering the parametric analysis results.


Author(s):  
Jonathan Rossiter ◽  
Kaan Inal ◽  
Raja Mishra

A new finite element (FE) specific failure criterion utilizing hardening rates to quantify bending stress is implemented into the MAT_124 material model in the commercial software LS-DYNA to simulate fracture of extruded AZ31 and cast AM60 magnesium alloy tubes. The simulations are performed by requiring element erosion of hexahedral solid elements in a three-dimensional (3D) FE model when the failure criterion is satisfied at any point in the simulation. Experimental stress–strain curves from tensile and compression tests of the materials are used as inputs in the model. The simulations reproduce the measured load displacement data as well as general features of the experimental failure modes of round and rectangular tubes undergoing axial crush tests. The model is applied to investigate the effects of a variety of design features, such as varying tube wall thickness, preformed bulges, alternate bands of Al and Mg alloys, and cladding Al on magnesium, on the macroscopic strain to failure. The results show that adding multiple preformed bulges to the tubes can increase the strain to failure and reduce the force required to cause deformation. Adding a single bulge concentrates the strain causing reduced macroscopic strain to failure. Placing sections of reduced wall thickness or brazing in sections of aluminum causes stress concentrations which reduce the macroscopic strain to failure. Cladding aluminum onto the outside of the magnesium tube is shown to improve strain to failure.


2021 ◽  
Author(s):  
Fernando Geremias Toni ◽  
Rodrigo Provasi ◽  
Clóvis de Arruda Martins

Abstract To correctly model the structural behavior of a flexible pipe, the contribution of all the layers must be completely understood, among them the interlocked carcass. That carcass is a metallic layer designed to provide radial stiffness to a flexible pipe, mainly supporting pressure differentials and thus preventing failure modes such as collapse and crushing, but its behavior under other loads is worth of investigation. This paper contributes to understanding the carcass behavior under tension. Given its complex helical and interlocked geometry, modelling the carcass through the Finite Element Method is a challenging task, not only due to the large size of the models, but also due to the nonlinearities and convergence difficulties that arise from the self-contacts at the interlocking. For these reasons, most works developed over the past decades have adopted an equivalent layer approach, in which the carcass is replaced by an orthotropic cylindrical layer with equivalent mechanical properties. Although practical, this approach disregards the effects from the interlocking, such as stiffness variations and stress concentrations. Therefore, aiming a more realistic representation and a better understanding of the mechanical behavior of the interlocked carcass, this work presents four different carcass finite element models to analyze this layer under tension loads. The first one is a complete three-dimensional finite element model of an interlocked carcass discretized with second order isoparametric solid elements and surface-to-surface contact elements. The second model consists of a version of the first one with the addition of an inner polymeric sheath. As for the third and fourth models, it was adopted the simplifying ring hypothesis, that is, a carcass with 90 degree lay angle, thus allowing the axisymmetric modelling of the two previous configurations, representing a substantial computational gain by using two-dimensional meshes. The results of those models are then presented and compared, and the validity of the adopted simplifying hypothesis is verified.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
Nicholas Haritos ◽  
Anil Hira ◽  
Priyan Mendis ◽  
Rob Heywood ◽  
Armando Giufre

VicRoads, the road authority for the state of Victoria, Australia, has been undertaking extensive research into the load capacity and performance of cast-in-place reinforced concrete flat slab bridges. One of the key objectives of this research is the development of analytical tools that can be used to better determine the performance of these bridges under loadings to the elastic limit and subsequently to failure. The 59-year-old Barr Creek Bridge, a flat slab bridge of four short continuous spans over column piers, was made available to VicRoads in aid of this research. The static testing program executed on this bridge was therefore aimed at providing a comprehensive set of measurements of its response to serviceability level loadings and beyond. This test program was preceded by the performance of a dynamic test (a simplified experimental modal analysis using vehicular excitation) to establish basic structural properties of the bridge (effective flexural rigidity, EI) and the influence of the abutment supports from identification of its dynamic modal characteristics. The dynamic test results enabled a reliably tuned finite element model of the bridge in its in-service condition to be produced for use in conjunction with the static testing program. The results of the static testing program compared well with finite element modeling predictions in both the elastic range (serviceability loadings) and the nonlinear range (load levels taken to incipient collapse). Observed collapse failure modes and corresponding collapse load levels were also found to be predicted well using yield line theory.


Author(s):  
Yifan Li ◽  
Huaiyuan Gu ◽  
Martyn Pavier ◽  
Harry Coules

Octet-truss lattice structures can be used for lightweight structural applications due to their high strength-to-density ratio. In this research, octet-truss lattice specimens were fabricated by stereolithography additive manufacturing with a photopolymer resin. The mechanical properties of this structure have been examined in three orthogonal orientations under the compressive load. Detailed comparison and description were carried out on deformation mechanisms and failure modes in different lattice orientations. Finite element models using both beam elements and three-dimensional solid elements were used to simulate the compressive response of this structure. Both the load reaction and collapse modes obtained in simulations were compared with test results. Our results indicate that three-dimensional continuum element models are required to accurately capture the behaviour of real trusses, taking into account the effects of finite-sized beams and joints.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


Sign in / Sign up

Export Citation Format

Share Document