Thermal-Structural Performance of Orthotropic Pin Fin in Electronics Cooling Applications

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
A. F. M. Arif ◽  
Syed M. Zubair ◽  
S. Pashah

Thermally conductive composites as compared to metals have reduced density, decreased oxidation, and improved chemical resistance, as well as adjustable properties to fit a given application. However, there are several challenges that need to be addressed before they can be successfully implemented in heat sink design. The interface between the device and heat sink is an important factor in the thermal design of microelectronics cooling. Depending on the thermal interface conditions and material properties, the contact pressure and thermal stress level can attain undesirable values. In this paper, we investigate the effect of thermal interface between the fin and base plate on thermal-structural behavior of heat sinks. A coupled-field (thermal-structural) analysis using finite element method is performed to predict temperature as well as stress fields in the interface region. In addition temperature and heat flow rate predictions are supported through analytical results. effect of various interface geometrical (such as slot-depth, axial-gap, and radial-gap) and contact properties (such as air gap with surface roughness and gaps filled with interface material) on the resulting thermal-structural response is investigated with respect to four interface materials combinations, and it is found that the thermal performance is most sensitive to the slot-depth compared to any other parameter.

Author(s):  
Abul Fazal M. Arif ◽  
Syed M. Zubair

Thermally conductive composites as compared to metals have reduced density, decreased corrosion, oxidation, and chemical resistance, as well as adjustable properties to fit a given application. However, there are several challenges that need to be addressed before they can be successfully utilized in heat sink design. The interface between the device and thermal product that is used to cool it is an important factor in the thermal network designs of microelectronics cooling. Depending on the thermal interface conditions and material properties, the contact pressure and thermal stress level can attain undesirable values. In this paper, we investigate the effect of thermal interface between the fin and base plate on thermalstructural behavior of heat sinks. A coupled-field (thermal-structural) analysis using finite element method is performed to predict temperature as well as stress fields in the region of interface. In addition temperature and heat transfer rate predictions is supported through analytical results. Effect of various interface properties (such as air gap with rough surface and gaps filled with interface material) on the resulting thermal-structural response of the pin fin is investigated with respect to four interface materials combinations.


2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Ninad Trifale ◽  
Eric Nauman ◽  
Kazuaki Yazawa

We present a study on the apparent thermal resistance of metal foams as a thermal interface in electronics cooling applications. Metal foams are considered beneficial for several applications due to its significantly large surface area for a given volume. Porous heat sinks made of aluminum foam have been well studied in the past. It is not only cost effective due to the unique production process but also appealing for the theoretical modeling study to determine the performance. Instead of allowing the refrigerant flow through the open cell porous medium, we instead consider the foam as a thermal conductive network for thermal interfaces. The porous structure of metal foams is moderately compliant providing a good contact and a lower thermal resistance. We consider foam filled with stagnant air. The major heat transport is through the metal struts connecting the two interfaces with high thermally conductive paths. We study the effect of both porosity and pore density on the observed thermal resistance. Lower porosity and lower pore density yield smaller bulk thermal resistance but also make the metal foam stiffer. To understand this tradeoff and find the optimum, we developed analytic models to predict intrinsic thermal resistance as well as the contact thermal resistance based on microdeformation at the contact surfaces. The variants of these geometries are also analyzed to achieve an optimum design corresponding to maximum compliance. Experiments are carried out in accordance with ASTM D5470 standard. A thermal resistance between the range 17 and 5 K cm2/W is observed for a 0.125 in. thick foam sample tested over a pressure range of 1–3 MPa. The results verify the calculation based on the model consisting the intrinsic thermal conductivity and the correlation of constriction resistance to the actual area of contact. The area of contact is evaluated analytically as a function of pore size (5–40 PPI), porosity (0.88–0.95), orientation of struts, and the cut plane location of idealized tetrakaidecahedron (TKDH) structure. The model is developed based on assumptions of elastic deformations and TKDH structures which are applicable in the high porosity range of 0.85–0.95. An optimum value of porosity for minimizing the overall interface thermal resistance was determined with the model and experimentally validated.


Author(s):  
Ravi S. Prasher ◽  
Jim Shipley ◽  
Suzana Prstic ◽  
Paul Koning ◽  
Jin-Lin Wang

Particle laden polymers are one of the most prominent thermal interface materials (TIM) used in electronics cooling. Most of the research has primarily dealt with the understanding of the thermal conductivity of these types of TIMs. For thermal design, reduction of the thermal resistance is the end goal. Thermal resistance is not only dependent on the thermal conductivity, but also on the bond line thickness (BLT) of these TIMs. It is not clear which material property(s) of these particle laden TIMs affects the BLT and eventually the thermal resistance. This paper introduces a rheology based semi-empirical model for the prediction of the BLT of these TIMs. BLT depends on the yield stress of the particle laden polymer and the applied pressure. The BLT model combined with the thermal conductivity model can be used for modeling the thermal resistance of these TIMs for factors such as particle volume faction, particle shape, base polymer viscosity, etc. This paper shows that there exists an optimal filler volume fraction at which thermal resistance is minimum. Finally this paper develops design rules for the optimization of thermal resistance for particle laden TIMs.


2006 ◽  
Vol 129 (1) ◽  
pp. 76-81 ◽  
Author(s):  
J. Richard Culham ◽  
Waqar A. Khan ◽  
M. Michael Yovanovich ◽  
Yuri S. Muzychka

The thermal design of plate fin heat sinks can benefit from optimization procedures where all design variables are simultaneously prescribed, ensuring the best thermodynamic and air flow characteristic possible. While a cursory review of the thermal network established between heat sources and sinks in typical plate fin heat sinks would indicate that the film resistance at the fluid-solid boundary dominates, it is shown that the effects of other resistance elements, such as the spreading resistance and the material resistance, although of lesser magnitude, play an important role in the optimization and selection of heat sink design conditions. An analytical model is presented for calculating the best possible design parameters for plate fin heat sinks using an entropy generation minimization procedure with constrained variable optimization. The method characterizes the contribution to entropy production of all relevant thermal resistances in the path between source and sink as well as the contribution to viscous dissipation associated with fluid flow at the boundaries of the heat sink. The minimization procedure provides a fast, convenient method for establishing the “best case” design characteristics of plate fin heat sinks given a set of prescribed boundary conditions. It is shown that heat sinks made of composite materials containing nonmetallic constituents, with a thermal conductivity as much as an order of magnitude less that typical metallic heat sinks, can provide an effective alternative where performance, cost, and manufacturability are of importance. It is also shown that the spreading resistance encountered when heat flows from a heat source to the base plate of a heat sink, while significant, can be compensated for by making appropriate design modifications to the heat sink.


Author(s):  
Abul Fazal M. Arif ◽  
Sulaman Pashah ◽  
Syed M. Zubair ◽  
M. Inam

Thermal management of electronic products relies on the effective dissipation of heat. Heat sink elements (e.g. a pin fin) are used for any effective heat dissipation network. Despite much optimized design of the heat sink element, the heat transfer may not be effective because the interface between power device and heat sink element is critical in the heat dissipation network. Thermal Interface Materials TIM (e.g. adhesive, solder, pads, or pastes) are employed at interface between power device and heat sink element to minimize the interface thermal resistance. However, several challenges need to be addressed before they can be successfully utilized because depending on the thermal interface conditions, the thermal stress level can attain undesirable values. This issue can be addressed by the optimization of the system design with the help of simulation methods. Generally the effects of interface conditions are studied on the thermal performance of the heat sink system whereas in this paper, a coupled-field (thermal-structural) analysis using FEM is performed to study the thermal as well as structural behavior of the heat sink system. Temperature variation and stress fields in the region of interface between pin fin and base plate are analyzed. Effects of various parameters (such as contact pressure, surface roughness, TIM thickness, and operating conditions) on the resulting thermal and structural response at the interface are presented. It has been found that different interface conditions may have comparable thermal performance with significant different stress fields at the interface. Therefore stress state must be known to ensure the structural integrity of the heat sink system for a given operating condition.


2003 ◽  
Vol 125 (6) ◽  
pp. 1170-1177 ◽  
Author(s):  
Ravi S. Prasher ◽  
Jim Shipley ◽  
Suzana Prstic ◽  
Paul Koning ◽  
Jin-lin Wang

Particle laden polymers are one of the most prominent thermal interface materials (TIM) used in electronics cooling. Most of the research has primarily dealt with the understanding of the thermal conductivity of these types of TIMs. For thermal design, reduction of the thermal resistance is the end goal. Thermal resistance is not only dependent on the thermal conductivity, but also on the bond line thickness (BLT) of these TIMs. It is not clear which material property(s) of these particle laden TIMs affects the BLT and eventually the thermal resistance. This paper introduces a rheology based semiempirical model for the prediction of the BLT of these TIMs. BLT depends on the yield stress of the particle laden polymer and the applied pressure. The BLT model combined with the thermal conductivity model can be used for modeling the thermal resistance of these TIMs for factors such as particle volume faction, particle shape, base polymer viscosity, etc. This paper shows that there exists an optimal filler volume fraction at which thermal resistance is minimum. Finally this paper develops design rules for the optimization of thermal resistance for particle laden TIMs.


2020 ◽  
pp. 089270572096564
Author(s):  
Xiao Wang ◽  
Hui Lu ◽  
Jun Chen

In this work, ultra-high molecular weight polyethylene (UHMWPE)/natural flake graphite (NG) polymer composites with the extraordinary high thermal conductivity were prepared by a facile mixed-heating powder method. Morphology observation and X-ray diffraction (XRD) tests revealed that the NG flakes could be more tightly coated on the surface of UHMWPE granules by mixed-heating process and align horizontally (perpendicular to the hot compression direction of composites). Laser flash thermal analyzer (LFA) demonstrated that the thermal conductivity (TC) of composites with 21.6 vol% of NG reached 19.87 W/(m·K) and 10.67 W/(m·K) in the in-plane and through-plane direction, respectively. Application experiment further demonstrated that UHMWPE/NG composites had strong capability to dissipate the heat as heat spreader. The obtained results provided a valuable basis for fabricating high thermal conductive composites which can act as advanced thermal management materials.


2015 ◽  
Vol 787 ◽  
pp. 505-509
Author(s):  
A.K. Lakshminarayanan ◽  
M. Suresh

In an era of compact cooling requirements, where air cooling systems seem to be ineffective and consistently, being replaced by liquid cooled systems, with greater watt density heat energy dissipation. Such cooling systems must work with good quality enabling high efficiency. Hence, an attempt is made to fabricate an aluminum alloy based flat plate heat sink with cover and base plate using friction stir welding. The base plate is machined to obtain channels for fluid flow and the cover plate is fitted in the base plate and welded. Two such configurations of these heat sinks were fabricated with varying channel lengths and number of channels. The flow characteristics of the model for these configurations were analyzed numerically using computational fluid dynamics (CFD) software tool, ANSYS fluent 14.


Sign in / Sign up

Export Citation Format

Share Document