Study of Submerged Jet for Suction of Fluid

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Sudhakar Subudhi ◽  
K. R. Sreenivas ◽  
Jaywant H. Arakeri

This paper deals with the study of a submerged jet for the suction of unwanted fluid. This submerged jet is caused by the fluid coming out from a source. The presence of a sink in front of this source facilitates the suction of the fluid depending upon the source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of the source and sink. The main purpose is the determination of the sink flow rate for 100% removal of the source fluid as a function of these parameters. The experiments have been carried using a source nozzle 6 mm in diameter and two sizes for the sink pipe diameter: 10 mm and 20 mm. The main diagnostics used are flow visualization using dye and particle image velocimetry (PIV). The dependence of the required suction flow rate to obtain 100% effectiveness on the suction tube diameter and angle is relatively weak compared to the lateral separation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karine Arrhenius ◽  
Oliver Büker

AbstractThe study presents an optimised method to correct flow rates measured with a LFE flowmeter pre-set on methane while used for gas mixtures of unknown composition at the time of the measurement. The method requires the correction of the flow rate using a factor based on the viscosity of the gas mixtures once the composition is accurately known. The method has several different possible applications inclusive for the sampling of biogas and biomethane onto sorbent tubes for conformity assessment for the determination of siloxanes, terpenes and VOC in general. Five models for the calculation of the viscosity of the gas mixtures were compared and the models were used for ten binary mixtures and four multi-component mixtures. The results of the evaluation of the different models showed that the correction method using the viscosity of the mixtures calculated with the model of Reichenberg and Carr showed the smallest biases for binary mixtures. For multi-component mixtures, the best results were obtained when using the models of Lucas and Carr.


Author(s):  
Raju Murugan ◽  
Dhanalakshmi Sellan ◽  
Pankaj S. Kolhe

Abstract Two-fluid flow blurring atomization is characterized by the backflow recirculation of the air phase in the liquid pipe by bifurcation of the liquid and airflow. Most of the primary spray process is completed in the injector due to the penetration of air into the liquid tube. Thus, the majority of the liquid ligaments are converted into a fine spray at the outlet of the nozzle. Experiments were performed with two different air to liquid ratios (0.6 and 1) by mass, where water is considered as the liquid and airflow was kept constant (0.2 g/s). To change the ALR, the liquid flow rate was changed. Particle image velocimetry (PIV) diagnostic technique provides the full-field velocity of the spray droplets (discrete phase). It may be noted that sprays are self-seeded and PIV measurements reflect the droplet velocities instead of air velocity. To understand the effect of the spatial resolution of PIV on spray droplet velocity; experiments were conducted at three different spatial resolutions (11.8, 16.4 and 23.22 μm/pixel) for each ALR. As the ALR is increased, the mass of the liquid in the spray decreases, resulting in finer atomization and velocity of the spray droplets. This means that finer droplets are generated for the same mass of air at a lower liquid flow rate as compared to higher liquid flow rate. Note that Reynolds stresses provide an indication of the turbulent breakup of the droplet and larger magnitudes observed for higher ALR indicate finer atomization.


Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 139 ◽  
Author(s):  
Daniel Butcher ◽  
Adrian Spencer

Techniques for the experimental determination of velocity fields such as particle image velocimetry (PIV) can often be hampered by spurious vectors or sparse regions of measurement which may occur due to a number of reasons. Commonly used methods for detecting and replacing erroneous values are often based on statistical measures of the surrounding vectors and may be influenced by further poor data quality in the region. A new method is presented in this paper using Linear Stochastic Estimation for vector replacement (LSEVR) which allows for increased flexibility in situations with regions of spurious vectors. LSEVR is applied to PIV dataset to demonstrate and assess its performance relative to commonly used bilinear and bicubic interpolation methods. For replacement of a single vector, all methods performed well, with LSEVR having an average error of 11% in comparison to 14% and 18% for bilinear and bicubic interpolation respectively. A more significant difference was found in replacement of clusters of vectors which showed average vector angle errors of 10°, 9° and 6° for bilinear, bicubic and LSEVR respectively. Error in magnitude was 3% for both interpolation techniques and 1% for LSEVR showing a clear benefit to using LSEVR for conditions that require multiple clustered vectors to be replaced.


Author(s):  
Luca Casarsa ◽  
Diego Micheli ◽  
Valentino Pediroda ◽  
Robert Radu

An atmospheric combustor model with optical access for confined, non-premixed swirl-stabilized flames was developed in order to investigate the combustion behaviour of gas turbine flames fired with low-caloric syngases. The applied measuring techniques are Particle Image Velocimetry (PIV) for cold aerodynamic analysis, IR thermometry in open flame conditions, thermocouple traverses and global emissions analyzer in confined flame conditions. Two different fuels were chosen: propane and a synthetic mixture of CH4, CO, CO2, H2 having a composition typical of a gas from wood pyrolysis. Thermal powers between ∼5 kW and ∼20 kW were obtained with two different air flow rates and equivalence ratio varied in the range φ = 0.2–1.0. The experimental results constitute a database for the validation of numerical combustion models. Preliminary numerical analysis was carried out with STAR-CD software package.


Author(s):  
Wei Wei ◽  
ZhiYi Li ◽  
Fengxia Liu ◽  
Zhijun Liu

Impinging streams technology has been widely used in many applications in recent years because of its enhancement to the heat and mass transfer between phases. In this paper, in order to investigate the influences of the impinging distance and flow rate on the characters of the flow field, gas-gas impinging streams flow fields are tested experimentally and analyze qualitatively with particle image velocimetry (PIV). The experimental equipment consists of two opposite nozzles which are the same axis. A PIV system is used to measure the characters of the 2-D flow field between two opposite nozzles. The gas is delivered by a compressor through two opposite jets which could be seeded with oil droplets as tracer particles. The effects of the flow rate and impinging distance on the velocity fields of impinging zone are investigated in detail. As the flow rate increases from 0.2 m3/h to 0.8 m3/h, the width of impinging zone increases from 0.25 to 0.5. However, the range of impinging zone does not change significantly as the impinging distance increases from 61mm to 94mm. The results indicate that the PIV technique is an effective method to measure and analyze the characters of impinging streams.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Kevin Tallio ◽  
Keith Miazgowicz ◽  
...  

Abstract The flow field at the inlet of a turbocharger compressor has been studied through stereoscopic particle image velocimetry (SPIV) experiments under different operating conditions. It is found that the flow field is quite uniform at high mass flow rates; but as the mass flow rate is reduced, flow reversal from the impeller is observed as an annular ring at the periphery of the inlet duct. The inception of flow reversal is observed to occur in the mid-flow operating region, near peak efficiency, and corresponds to an incidence angle of about 15.5 deg at the inducer blade tips at all tested speeds. This reversed flow region is marked with high tangential velocity and rapid fluctuations. It grows in strength with reducing mass flow rate and imparts some of its angular momentum to the forward flow due to mixing. The penetration depth of the reversed flow upstream from the inducer plane is found to increase quadratically with decreasing flow rate.


Author(s):  
Thomas E. Conder ◽  
Ralph S. Budwig ◽  
Richard S. Skifton

An experiment was conducted at Idaho National Laboratory to investigate the bypass flow associated with a Gas Turbine-Modular Helium Reactor in direct support of Computational Fluid Dynamic validation [1]. Velocity fields within a representative quartz model, consisting of an upper plenum, upper block, and lower block, were measured using Particle Image Velocimetry; after which, flow rates were calculated in each section. The present study was carried out to determine flow distribution from the upper plenum to the fuel block assembly. It was found that the flow rates in the lower six coolant channels varied from their average only by 2.4, 4.6, and 2.5% for the low, medium, and high flow cases, respectively. Consequently, it was concluded that the non-uniform inlet velocity condition in the upper plenum had insignificant effect on flow distribution to the coolant channels and interstitial gap.


Sign in / Sign up

Export Citation Format

Share Document