scholarly journals Design and Experimental Validation of a Ducted Counter-Rotating Axial-Flow Fans System

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
H. Nouri ◽  
F. Ravelet ◽  
F. Bakir ◽  
C. Sarraf ◽  
R. Rey

An experimental study on the design of counter-rotating axial-flow fans was carried out. The fans were designed using an inverse method. In particular, the system is designed to have a pure axial discharge flow. The counter-rotating fans operate in a ducted-flow configuration and the overall performances are measured in a normalized test bench. The rotation rate of each fan is independently controlled. The relative axial spacing between fans can vary from 17% to 310%. The results show that the efficiency is strongly increased compared to a conventional rotor or to a rotor-stator stage. The effects of varying the rotation rates ratio on the overall performances are studied and show that the system has a very flexible use, with a large patch of high efficient operating points in the parameter space. The increase of axial spacing causes only a small decrease of the efficiency.

Author(s):  
Hussain Nouri ◽  
Florent Ravelet ◽  
Farid Bakir ◽  
Christophe Sarraf

An experimental study on counter-rotating axial-flow fans was carried out. The fans of diameter D = 375 mm were designed using an inverse method. The counter-rotating fans operate in a ducted-flow configuration and the overall performances are measured in a normalized test bench. The rotation rate of each fan is independently controlled. The axial spacing between the fans can vary from 10 to 50 mm by steps of 10 mm. The results show that the efficiency is strongly increased compared to a conventional rotor or to a rotor-stator stage. The effects of varying the rotation rates ratio on the overall performances are studied and show that the system is highly efficient on a wide range of flow-rates and pressure rises. However, the change of the axial distance between rotors from 10 to 50 mm does not seem to change the overall performances. This system has thus a very flexible use, with a large patch of high efficient operating points in the parameter space. Further local studies including velocity measurements and wall-pressure fluctuations in the space between the rotors are needed to better understand the interactions between the rotors and to optimize the system.


Author(s):  
Marcus Kuschel ◽  
Bastian Drechsel ◽  
David Kluß ◽  
Joerg R. Seume

Exhaust diffusers downstream of turbines are used to transform the kinetic energy of the flow into static pressure. The static pressure at the turbine outlet is thus decreased by the diffuser, which in turn increases the technical work as well as the efficiency of the turbine significantly. Consequently, diffuser designs aim to achieve high pressure recovery at a wide range of operating points. Current diffuser design is based on conservative design charts, developed for laminar, uniform, axial flow. However, several previous investigations have shown that the aerodynamic loading and the pressure recovery of diffusers can be increased significantly if the turbine outflow is taken into consideration. Although it is known that the turbine outflow can reduce boundary layer separations in the diffuser, less information is available regarding the physical mechanisms that are responsible for the stabilization of the diffuser flow. An analysis using the Lumley invariance charts shows that high pressure recovery is only achieved for those operating points in which the near-shroud turbulence structure is axi-symmetric with a major radial turbulent transport component. This turbulent transport originates mainly from the wake and the tip vortices of the upstream rotor. These structures energize the boundary layer and thus suppress separation. A logarithmic function is shown that correlates empirically the pressure recovery vs. the relevant Reynolds stresses. The present results suggest that an improved prediction of diffuser performance requires modeling approaches that account for the anisotropy of turbulence.


Author(s):  
Fan Lin ◽  
Fangfei Ning ◽  
Huoxing Liu

This paper presents both experimental and unsteady RANS investigations of a slot-type casing treatment at a transonic axial flow compressor rotor. Experimental results show that at 60% and 98% of rotor design wheel speeds, approximately 100% and 200% extra extensions of the rotor operation ranges are achieved, respectively. On the other hand, there are about 3.6% and 2.0% drops of efficiencies at 60% and 98% speeds respectively if comparisons are made at the same peak-efficiency mass flow rates of the solid casing case. If comparing the respective peak efficiencies for the solid casing case with those for the treated casing case, there are still about 3.4% and 0.7% drops at 60% and 98% speeds, respectively. As for the unsteady RANS study, an in-house unsteady RANS code has been used to study the casing treatment flow at several operating points, i.e., the peak efficiency and the near stall with regard to the solid casing case at 60% speed and 98% speed, respectively. It is shown that the interactions between the blade passage flow and the casing treatment flow exhibit different manner at two rotating speeds. The flow condition in which the rotor operates, i.e., either the subsonic condition at the 60% speed or the transonic condition with passage shock presented at the 98% speed, is one of the determinate factors that are responsible for the manner the casing treatment works. The loss production due to casing treatment is also particularly discussed.


Author(s):  
Ali Mohammadi ◽  
Masoud Boroomand

This paper presents the design procedure of a ducted contra-rotating axial flow fan and investigates the flow behavior inside it using ANSYS CFX-15 flow solver. This study investigates parameters such as pressure ratio, inlet mass flow rate and efficiency in different operating points. This system consists of two rotors with an outer diameter of 434 mm and an inner diameter of 260 mm which rotate contrary to each other with independent nominal rotational speeds of 1300 rpm. Blades’ maximum thickness and rotational speeds of each rotor will be altered as well as the axial distance between the two rotors to investigate their effect on the overall performance of the system. Designed to deliver a total pressure ratio of 1.005 and a mass flow rate of 1.8 kg/s at nominal rotational speeds, this system proves to be much more efficient compared to the conventional rotor-stator fans. NACA-65 airfoils are used in this analysis with the necessary adjustments at each section. Inverse design method is used for the first rotor and geometrical constraints are employed for the second one to have an axial inlet and outlet flow without using any inlet or outlet guide vanes. Using free vortex swirl distribution method, characteristic parameters and the necessary data for 3D generation of this model are obtained. The appropriate grid is generated using ATM method in ANSYS TurboGrid and the model is simulated in CFX-15 flow solver by employing k-ε turbulence model in the steady state condition. Both design algorithm and simulation analysis confirm the high anticipated efficiency for this system. The accuracy of the design algorithm will be explored and the most optimum operating points in different rotational speed ratios and axial distances will be identified. By altering the outlet static pressure of the system, the characteristic map is obtained.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5863
Author(s):  
Massimo Cardone ◽  
Bonaventura Gargiulo

This paper presents a virtual model of a scroll compressor developed on the one-dimensional analysis software Simcenter Amesim®. The model is semi-empirical: it needs some physical details of the modelled machine (e.g., the cubic capacity), but, on the other hand, it does not require the geometrical features of the spirals, so it needs experimental data to calibrate it. The model also requires rotational speed and the outlet temperature as boundary conditions. The model predicts the power consumption and the mass flow rate and considers leakages and mechanical losses. After the model presentation, this paper describes the test bench and the obtained data used to calibrate and validate the model. At last, the calibration process is described, and the results are discussed. The calculated values fit the experimental data also in extrapolation, despite the model is simple and performs calculations within 7 s. Due to these characteristics, the model is suitable for being used in a larger model as a sub-component.


Author(s):  
M. G. Rose ◽  
N. W. Harvey ◽  
P. Seaman ◽  
D. A. Newman ◽  
D. McManus

Part I of this paper described how the HP turbine model rig of the Rolls-Royce Trent 500 was redesigned by applying non-axisymmetric end walls to both the vane and blade passages, whilst leaving the turbine operating point and overall flow conditions unaltered. This paper describes the results obtained from testing of the model rig and compares them with those obtained for the datum design (with conventional axisymmetric end walls). Measured improvements in the turbine efficiency are shown to be in line with those expected from the previous linear cascade research at Durham University, see Harvey et al. [1] and Hartland et al. [2]. These improvements are observed at both design and off-design conditions. Hot wire traverses taken at the exit of the rotor show, unexpectedly, that the end wall profiling has caused changes across the whole of the turbine flow field. This result is discussed making reference to a preliminary 3-D CFD analysis. It is concluded that the design methodology described in part I of this paper has been validated, and that non-axisymmetric end wall profiling is now a major new tool for the reduction of secondary loss in turbines (and potentially all axial flow turbomachinery). Further work, though, is needed to fully understand the stage (and multistage) effects of end wall profiling.


Author(s):  
S. Damle ◽  
T. Dang ◽  
J. Stringham ◽  
E. Razinsky

The practical utility of a 3D inverse viscous method is demonstrated by carrying out a design modification of a first-stage rotor in an industrial compressor. In this design modification study, the goal is to improve the efficiency of the original blade while retaining its overall aerodynamic, structural and manufacturing characteristics. By employing a simple modification to the blade pressure loading distribution (which is the prescribed flow quantity in this inverse method), the modified blade geometry is predicted to perform better than the original design over a wide range of operating points, including an improvement in choke margin.


Sign in / Sign up

Export Citation Format

Share Document