Experimental Approach of Measuring Thermal Properties for Ecological Materials Based on Additives Cork or Wool and Illite

Author(s):  
Soumia Mounir ◽  
Abdelhamid Khabbazi ◽  
Youssef Maaloufa ◽  
Asmae Khaldoun ◽  
Yassine El Hamdouni

This work is a contribution to understand the thermal properties of Illite with ecological additives granular presented by cork or fiber by wool in order to use those composites in building construction, the composites are air dried. Knowing that the clay composites were studied before, a series of experimental studies confirmed by complete theoretical models were conducted using different methods such as the asymmetrical hot plate in transient, steady-state regime, and flash methods in order to determine the thermal properties of the composite clay with ecological additives. Also, an analysis of sensibility of thermal properties was studied. For this purpose, a thermal characterization using hot plate and flash methods confirmed by complete theoretical models was studied. Then an analysis of the physicochemical characterization of clay was done to determine its characteristics. Finally, a study of depth heat flow diffusion was conducted to see the effect of additives on penetrating exterior heat flow inside house.

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2021 ◽  
Author(s):  
Qifeng Jiang ◽  
Sydnee Wong ◽  
Rebekka S Klausen

Thermal characterization of polysilanes has focused on the influence of organic side chains, whereas little is understood about the influence of silane backbone microstructure on thermal stability, phase properties, and...


2020 ◽  
Vol 12 (10) ◽  
pp. 4194
Author(s):  
David Bienvenido-Huertas ◽  
Juan Moyano ◽  
Carlos E. Rodríguez-Jiménez ◽  
Aurelio Muñoz-Rubio ◽  
Francisco Javier Bermúdez Rodríguez

The application of passive design strategies in ships, such as the use of superstructures with high thermal insulation, allows the energy demand of heating, ventilation, and air conditioning systems to be reduced. There is a knowledge gap in the scientific literature on the possibilities to thermally characterize superstructures. Knowing such possibilities would make a methodology available for the quality control of naval constructions and for the inspection of the appropriate state of insulations in existing ships. For this purpose, a total of three different typologies of ship superstructures were monitored, and the data obtained were analyzed by using various existing approaches for the thermal characterization of façades: the heat flow meter method and temperature measurement methods. The results showed that the heat flow meter method constitutes a valid methodology to obtain representative results. In addition, guaranteeing a thermal gradient dependent of the wall typology and placing probes in zones not influenced by thermal bridges ensure that representative results are achieved.


2014 ◽  
Vol 10 (4) ◽  
pp. 727-735 ◽  
Author(s):  
Carlos Andrés Sandoval Gordillo ◽  
Germán Ayala Valencia ◽  
Rubén Antonio Vargas Zapata ◽  
Ana Cecilia Agudelo Henao

Abstract In the current work, physicochemical properties of arrowroot starch and thermal properties of glycerol/arrowroot starch membranes were investigated. Arrowroot starch exhibited high purity (starch content >99%) with amylose content >40% and granule size dispersion between 29 and 126 μm. Arrowroot starch has a gelatinization temperature of 63.94°C and a B-type crystalline structure. Arrowroot starch, in combination with three levels of glycerol, was used to manufacture membranes by casting method. Increasing the plasticizer effect due to glycerol content increased the water weight loss of the membranes at temperatures higher than 110°C. Additionally, the onset temperature of the endothermic peak observed by differential scanning calorimetry and associated to water removal from the membranes changed with glycerol content. Physicochemical and thermal properties of arrowroot starch and glycerol/arrowroot starch membranes were similar to those reported previously for other starch sources. From the data obtained in this study, it is clear that arrowroot starch could have promising industrial applications.


1999 ◽  
Vol 121 (3) ◽  
pp. 528-536 ◽  
Author(s):  
S. W. Indermuehle ◽  
R. B. Peterson

A phase-sensitive measurement technique for determining two independent thermal properties of a thin dielectric film is presented. The technique involves measuring a specimen’s front surface temperature response to a periodic heating signal over a range of frequencies. The phase shift of the temperature response is fit to an analytical model using thermal diffusivity and effusivity as fitting parameters, from which the thermal conductivity and specific heat can be calculated. The method has been applied to 1.72-μm thick films of SiO2 thermally grown on a silicon substrate. Thermal properties were obtained through a temperature range from 25°C to 300°C. One interesting outcome stemming from analysis of the experimental data is the ability to extract both thermal conductivity and specific heat of a thin film from phase information alone. The properties obtained with this method are slightly below the bulk values for fused silica with a measured room temperature (25°C) thermal conductivity of 1.28 ± 0.12 W/m-K.


2021 ◽  
Author(s):  
Stefano Corrà ◽  
Marina Tranfik Bakic ◽  
Jessica Groppi ◽  
Massimo Baroncini ◽  
Serena Silvi ◽  
...  

Natural and artificial autonomous molecular machines operate by constantly dissipating energy coming from an external source to maintain a non-equilibrium state. The in-depth study of these dissipative states is highly challenging as they exist only as long as energy is provided. Here we report on the detailed physicochemical characterization of the dissipative operation of a supramolecular pump transducing light energy into chemical energy by shifting the equilibrium of self-assembly reactions. The composition of the system under light irradiation was followed in real-time by 1H NMR and parameters such as the dissipation and the energy storage at the steady state were extracted for four different irradiation intensities. For the first time in an artificial system, we quantitatively probed the relationship between the light energy input and the deviation of the dissipative state from thermodynamic equilibrium. Our results also provide a testing ground for newly developed theoretical models.


Author(s):  
Youngsuk Son ◽  
Monalisa Mazumder ◽  
Theodorian Borca-Tasciuc

Knowledge of the thermal transport properties in thin films and nanostructures is critical for a wide range of applications in microelectronics, photonics, micro-electro-mechanical-systems, and thermoelectrics. The last twenty years have seen significant developments in thin-film thermal characterization techniques. Despite these advances, the characterization of the thermal transport properties in low-dimensional systems remains a challenging task. Recently, thermal properties of nanowire/nanotube nanocomposites such as thermoelectric nanowires and aligned carbon nanotubes (CNT) deposited on silicon substrates or in alumina or polymer matrix have attracted a great interest due to their possible applications in high efficiency thermoelectric energy conversion and thermal management applications. However, a major challenge for thermal characterization of nanowire/nanotube composites is their thermal anisotropy. This work presents measurements of anisotropic thermal properties using a photothermoelectric technique.


2016 ◽  
Vol 869 ◽  
pp. 74-78
Author(s):  
José Passos Fernandes ◽  
A. Tibola ◽  
M. Lorensetti ◽  
G.W. Duarte ◽  
M.R. Rocha ◽  
...  

This work presents a study about thermal properties of a ceramic material based on NdBaCu system sintered with barium carbonate. These specialized ceramics are manufactured under special conditions and due to its unique electrical and thermal properties are frequently used by the electronic industry. Ceramics containing neodymium-barium-copper (NdBaCu) exhibit high conductivity at low temperatures. In this work, the ceramic samples were sintered with different percentage of barium carbonate, cupric and neodymium oxide and were characterized with Termogravimetric Analysis (TGA), Differential Scanning Calorimetric (DSC), Thermal Dilatometric Analysis (TDA) and X-Ray Diffraction Analysis (DRX). The results showed that the electrical conductivity of NdBaCu system is dependent on the calcination temperature. In turn, the complete calcination is dependent on the barium percentage and the thermal treatment conditions.


Sign in / Sign up

Export Citation Format

Share Document