Response of Honeycombs Subjected to In-Plane Shear

2016 ◽  
Vol 83 (6) ◽  
Author(s):  
Youming Chen ◽  
Raj Das ◽  
Mark Battley

Study on the response of honeycombs subjected to in-plane shear helps establish the constitutive relations for honeycombs and shed light on the mechanics of cellular materials. The present study explores the nonlinear elastic response of honeycombs under in-plane shear by analyzing the large deflection of cell walls in a unit cell. Governing equations are established which relate the macroscopic response of honeycombs to the deflection of cell walls. Solving these equations, the behavior of regular honeycombs under in-plane shear along horizontal (X) and vertical (Y) directions was investigated. It is found that the response of regular honeycombs under in-plane shear depends on the nondimensional shear stress which is a parameter combining the thickness-to-length ratio of cell walls, the Young's modulus of base materials, and macroscopic shear stress. Lateral shrinking is a distinctive characteristic for honeycombs under in-plane shear, which should be taken into account when establishing constitutive relations and performing simple shear experiments. Expressions for predicting the shear strength of honeycombs are formulated in this paper. It is noted that the normalized shear strength of regular honeycombs depends on two ratios: the thickness-to-length ratio of cell walls and the ratio of Young's modulus to yield strength of base materials, and the former has a dominant effect. By comparing honeycombs with cell walls of uniform thickness against honeycombs with vertical cell walls of double thickness, it is found that doubling the thickness of vertical cell walls of honeycombs increases their shear strength along horizontal (X) direction nearly twice, but does not improve the shear strength that much along the vertical (Y) direction.


2013 ◽  
Vol 564 ◽  
pp. 37-40 ◽  
Author(s):  
Balázs Hajgató ◽  
Songül Güryel ◽  
Yves Dauphin ◽  
Jean-Marie Blairon ◽  
Hans E. Miltner ◽  
...  


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Fei Wang ◽  
Ping Cao ◽  
Yu Chen ◽  
Qing-peng Gao ◽  
Zhu Wang

In order to investigate the influence of the joint on the failure mode, peak shear strength, and shear stress-strain curve of rock mass, the compression shear test loading on the parallel jointed specimens was carried out, and the acoustic emission system was used to monitor the loading process. The joint spacing and joint overlap were varied to alter the relative positions of parallel joints in geometry. Under compression-shear loading, the failure mode of the joint specimen can be classified into four types: coplanar shear failure, shear failure along the joint plane, shear failure along the shear stress plane, and similar integrity shear failure. The joint dip angle has a decisive effect on the failure mode of the specimen. The joint overlap affects the crack development of the specimen but does not change the failure mode of the specimen. The joint spacing can change the failure mode of the specimen. The shear strength of the specimen firstly increases and then decreases with the increase of the dip angle and reaches the maximum at 45°. The shear strength decreases with the increase of the joint overlap and increases with the increase of the joint spacing. The shear stress-displacement curves of different joint inclination samples have differences which mainly reflect in the postrupture stage. From monitoring results of the AE system, the variation regular of the AE count corresponds to the failure mode, and the peak value of the AE count decreases with the increase of joint overlap and increases with the increase of joint spacing.



2006 ◽  
Vol 505-507 ◽  
pp. 37-42 ◽  
Author(s):  
Jia Lin Tsai ◽  
Jui Ching Kuo ◽  
Shin Ming Hsu

This research is aimed to fabricate glass fiber/epoxy nanocomposites containing organoclay as well as to understand the organoclay effect on the in-plane shear strength of the nanocomposites. To demonstrate the organoclay effect, three different loadings of organoclay, were dispersed in the epoxy resin using mechanical mixer followed by sonication. The corresponding glass/epoxy nanocomposites were prepared by impregnating the organoclay epoxy mixture into the dry glass fiber through a vacuum hand lay-up process. Off-axis block glass/epoxy nanocomposites were tested in compression to produce in-plane shear failure. It is noted only the specimens showing in-plane shear failure mode were concerned in this study. Through coordinate transformation law, the uniaxial failure stresses were then converted to a plot of shear stress versus transverse normal stress from which the in-plane shear strength was obtained. Experimental results showed that the fiber/epoxy nanocomposite exhibit higher in-plane shear strength than the conventional composites. This increased property could be ascribed to the enhanced fiber/matrix adhesion promoted by the organoclay.



Author(s):  
Jaehyung Ju ◽  
Joshua D. Summers ◽  
John Ziegert ◽  
Georges Fadel

When designing a flexible structure consisting of cellular materials, it is important to find the maximum effective strain of the cellular material resulting from the deformed cellular geometry and not leading to local cell wall failure. In this paper, a finite in-plane shear deformation of auxtic honeycombs having effective negative Poisson’s ratio is investigated over the base material’s elastic range. An analytical model of the inplane plastic failure of the cell walls is refined with finite element (FE) micromechanical analysis using periodic boundary conditions. A nonlinear constitutive relation of honeycombs is obtained from the FE micromechanics simulation and is used to define the coefficients of a hyperelastic strain energy function. Auxetic honeycombs show high shear flexibility without a severe geometric nonlinearity when compared to their regular counterparts.



2000 ◽  
Vol 15 (4) ◽  
pp. 951-960 ◽  
Author(s):  
Shuqi Guo ◽  
Yutaka Kagawa

Temperature dependence of in situ fiber strength, effective interface shear stress, Young's modulus of matrix, and matrix fracture energy in a polymer-infiltrationpyrolysis (PIP)-processed two-dimensional plain-woven fabric carbon-coated Nicalon™ SiC fiber-reinforced SiC matrix composite was studied through a tensile test in air at 298 (room temperature), 800, and 1200 K. In situ fiber strength and effective interface shear stress were determined by fracture mirror size and fiber pullout length measurements, respectively. The fiber strength was insensitive to test temperature up to 800 K but dropped significantly at 1200 K. Conversely, the interface shear stress showed a strong temperature dependence, decreasing at 800 K and drastically increasing at 1200 K. The temperature dependence of both values was reasonably explained. Temperature dependence of Young's modulus of matrix was derived from Young's modulus of the composite and fiber and ranged from ≈40 to ≈38 GPa. Matrix fracture energy was also determined from the transverse matrix cracking stress and ranged from ≈16 to ≈5.5 J/m2. Both Young's modulus of matrix and the matrix fracture energy showed only slight temperature dependence up to 800 K; however, both values decreased significantly at 1200 K.



2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jianhang Chen ◽  
Shengli Yang ◽  
Hongbao Zhao ◽  
Junwen Zhang ◽  
Fulian He ◽  
...  

Fully grouted rock bolts are widely used in civil engineering and mining engineering, playing a significant role in keeping the stability and safety of excavations. In this paper, the load transfer mechanism of fully grouted rock bolts was studied with an analytical model. A trilinear model was used to depict the bond-slip behaviour of the bolt/grout interface. The displacement of the confining medium was involved in this analytical model. Then, the shear stress propagation along the bolt/grout interface was analysed in the elastic, elastic-softening, elastic-softening-debonding, softening-debonding, and debonding stages. Experimental pull-out tests were used to validate this analytical model. There was a good correlation between experimental and analytical results. A parametric study was conducted to evaluate the influence of Young’s modulus of the confining medium, the shear strength of the bolt/grout interface, and the residual shear strength of the bolt/grout interface on the load transfer performance of rock bolts. The results show that increasing Young’s modulus of the confining medium was beneficial for improving the load transfer performance of rock bolts. However, once Young’s modulus of the confining medium was beyond a critical limit, it had marginal effect on the peak load of rock bolts. Furthermore, increasing the shear strength of the bolt/grout interface and the residual shear strength of the bolt/grout interface led to rising of the peak load of rock bolts. However, compared with the residual shear strength of the bolt/grout interface, increasing the shear strength of the bolt/grout interface had more apparent effect in improving the peak load of rock bolts.



Holzforschung ◽  
2014 ◽  
Vol 68 (5) ◽  
pp. 583-590 ◽  
Author(s):  
Hiroshi Yoshihara ◽  
Masahiro Yoshinobu

Abstract The off-axis tensile strength (OATS) of copy paper, filter paper, and sack paper was obtained from dog-bone specimens. The relationship between OATS and the off-axis angle (OAA) was predicted under several failure conditions. Additionally, the shear strengths (SS) of these papers were evaluated based on the results of OAT tests. The OATS could be accurately predicted under several Hill-type failure conditions. An equation for deriving the in-plane SS of these papers was proposed based on the tensile strength of the specimen with a 35° OAA, in which the contribution of the shear stress component was maximum.



1998 ◽  
Vol 521 ◽  
Author(s):  
W. Sanders ◽  
L. J. Gibson

ABSTRACTMeasurements of the Young's modulus and compressive strength of several closedcell aluminum foams indicate that they are lower than expected from models for foam behaviour. Microstructural characterization has revealed that there are a number of defects in the cell structure which may contribute to the reduction in mechanical properties. These include: cell wall curvature, cell wall corrugations, density variations and non-equiaxed cell shape. Finite element analysis of a closed-cell tetrakaidecahedral unit cell with idealized curved or corrugated cell walls indicates that these two types of defects can reduce the Young's modulus and compressive strength by up to 70%. In this paper we report the results of measurements of the curvature of the cell walls and of the amplitude and frequency of corrugations in the cell walls and use simple bounds to estimate the reduction in modulus that they are responsible for.



1999 ◽  
Vol 36 (4) ◽  
pp. 625-639 ◽  
Author(s):  
Kok-Kwang Phoon ◽  
Fred H Kulhawy

To evaluate geotechnical variability on a general basis that will facilitate the use of reliability-based design procedures, it is necessary to assess inherent soil variability, measurement error, and transformation uncertainty separately. The inherent variability and measurement error are addressed in a companion paper, and transformation uncertainty is addressed herein. A second-moment probabilistic approach is applied to combine these uncertainties consistently based on the manner in which the design soil property is derived. The design properties considered in this paper are undrained shear strength, effective stress friction angle, in situ horizontal stress coefficient, and Young's modulus. This paper concludes with specific guidelines on the typical coefficients of variation for these common design soil properties as a function of the test type and the type of correlation used.Key words: transformation uncertainty, undrained shear strength, friction angle, in situ horizontal stress coefficient, Young's modulus, geotechnical variability.



2017 ◽  
Vol 29 (4) ◽  
pp. 225-234 ◽  
Author(s):  
Ervina Efzan Mhd Noor ◽  
Ayodeji Samson Ogundipe

Purpose This paper aims to investigate the effect different fluxes have on the mechanical properties of lead-free solders, specifically Sn-Zn-Bi solder alloy. The solder billets were soldered in between copper substrates and flux was applied. The mechanical tests carried out on the solder alloys were tensile and shear tests. They were experimented on with different fluxes, namely, water-soluble (paste), rosin mildly activated (RMA) and insoluble (RMA) flux. From these experiments, the ultimate tensile strength, shear strength, elongation, yield stress, Young’s modulus and the stress-strain curve are derived. The results showed that solder billets that were soldered onto copper substrates with water-soluble flux yielded the highest ultimate tensile strength and shear strength values of 9.9961 MPa and 118.836 MPa, respectively. Billets soldered using RMA flux had the highest values of elongation and Young’s modulus, 0.306 mm and 50,257.295 MPa, respectively. However, on viewing the failure of all the specimens under an optical microscope and scanning electron microscope (SEM), specimens soldered using water-soluble flux possessed the least deformities, depicting their higher level of mechanical properties, entailing their strength and ductility, deeming them as the most suitable flux for microelectronic applications. Design/methodology/approach The solder billets were soldered in between copper substrates and flux was applied. The mechanical tests carried out on the solder alloys were tensile and shear tests. They were experimented on with different fluxes, namely, water-soluble (paste), RMA and insoluble flux (RMA) flux. From these experiments, the ultimate tensile strength, shear strength, elongation, yield stress, Young’s modulus and the stress-strain curve are derived. Findings The results showed that solder billets that were soldered onto copper substrates with water-soluble flux yielded the highest ultimate tensile strength and shear strength values of 9.9961 MPa and 118.836 MPa, respectively. Originality/value This paper demonstrated that water-soluble fluxes gave the better strength and were most suitable for microelectronics applications.



Sign in / Sign up

Export Citation Format

Share Document