Thermal Performance of Miniscale Heat Sink With Jet Impingement and Dimple/Protrusion Structure

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Zhongyang Shen ◽  
Qi Jing ◽  
Yonghui Xie ◽  
Di Zhang

Cooling technique in a miniscale heat sink is essential with the development of high-power electronics, such as electronic chip. As heat transfer techniques, jet impingement cooling and convective cooling by roughened surface are commonly adopted. To obtain a good cooling efficiency, the cooling structure within the heat sink should be carefully designed. In the present study, the miniscale heat sink with a feature size of 1–100 mm is setup. Arrangement of the jet impingement and dimple/protrusion surface is designed as heat transfer augmentation approaches. The effect of dimple/protrusion configuration and depth to diameter ratio is discussed. From the result, the heat transfer coefficient h distribution of heat sink surface is demonstrated for each case. The pressure penalty due to the arrangement of roughened structure is evaluated. Also, thermal performance (TP) and performance evaluation plot are adopted as evaluations of cooling performance for each configuration. Comparing all the cases, optimal cooling structure considering the energy-saving performance is obtained for the miniscale heat sink. Referencing the statistics, a new insight has been provided for the design of cooling structure inside the miniscale heat sink.

Author(s):  
Zhongyang Shen ◽  
Qi Jing ◽  
Yonghui Xie ◽  
Di Zhang

Cooling technique in mini-scale heat sink is essential with the development of high power electronics such as electronic chip. As heat transfer techniques, jet impingement cooling and convective cooling by roughened surface are commonly adopted. To obtain good cooling efficiency, the cooling structure within the heat sink should be carefully designed. In the present study, mini-scale heat sink with feature size of 1∼10 mm is set up. Arrangement of jet impingement and dimple/protrusion surface are designed as heat transfer augmentation approaches. The effect of dimple/protrusion configuration is discussed. From the result, the Nu distribution of on heat sink surface is demonstrated for each case. The pressure penalty due to the arrangement of roughened structure is evaluated. Also, thermal performance TP and performance evaluation plot are adopted as evaluations of cooling performance for each configuration. Comparing all cases, optimal cooling structure considering the energy saving performance is obtained for the mini-scale heat sink. Referencing the statistics, new insight has been provided for the design of cooling structure inside mini-scale heat sink.


2021 ◽  
Vol 7 (5) ◽  
pp. 2794-2807
Author(s):  
Deepak Kumar ◽  
Mohammad Zunaid ◽  
Samsher Gautam

Objectives: The current investigation introduces the concept of heat sink with combination of jet impingement, micro – channel and air foil shaped pillars. A numerical model is designed to explore the thermal performance of jet impingement with constant heat flux. The steady state conditions are assumed for the laminar and incompressible flow. For the purpose of study dimensionless variables are formed. The performance of jet impingement was predicted in terms of different parameters like temperature rise, drop in pressure and coefficient of heat transfer. Augmentation in pitch diameter ratio, leads to increase in temperature for a particular value of height diameter ratio. Also the heat transfer coefficient gets lowered with the increase in pitch diameter ratio. So proper selection of dimensionless parameters to increase the heat dissipation is of utmost importance.


1994 ◽  
Vol 116 (3) ◽  
pp. 206-211 ◽  
Author(s):  
R. A. Wirtz ◽  
Weiming Chen ◽  
Ronghua Zhou

Heat transfer experiments are reported on the thermal performance of longitudinal fin heat sinks attached to an electronic package which is part of a regular array of packages undergoing forced convection air cooling. The effect of coolant bypass on the performance of the heat sink is assessed and performance correlations for reduced heat transfer due to this effect are developed. These correlations are used to develop design guidelines for optimal performance.


2020 ◽  
Vol 10 (11) ◽  
pp. 3898
Author(s):  
Yi-Cheng Huang ◽  
Huan-Chu Hsu

In this study, we aimed to create heat sinks with higher heat dissipation capabilities for a compact light-emitting diode (LED) recessed downlight (CLRDL) under jet impingement cooling. We desired to use the sinks in limited space to maintain lower junction temperature and allow higher LED power. Perforated-finned heat sinks (PTFHSs) and metal-foam-like heat sinks (MFLHSs) fabricated using selective laser melting (SLM) were compared with a traditional finned heat sink (TTFHS). Two cooling fans with higher and lower velocity at Reynolds numbers of 16916 and 6594 were individually installed on each heat sink. Numerical simulations were performed using COMSOL rotating machinery and nonisothermal flow interface with the standard k-ε turbulence flow model. Validations were performed on this apparatus. The SLM heat sinks exhibited higher Nusselt numbers and lower thermal resistance than traditional heat sinks because of a relatively higher heat transfer coefficient and larger heat transfer area. For the proposed SLM heat sinks with larger surface areas, complex flow channels, and ventilation holes under jet impingement cooling, the PTFHS exhibited the highest heat transfer enhancement followed by MFLHS and TTFHS. The results contribute to solving the problems of heat dissipation of higher light output LED lighting.


1991 ◽  
Vol 113 (2) ◽  
pp. 321-328 ◽  
Author(s):  
R. K. Wilcoxon ◽  
A. Moutsoglou

A criterion for comparing the relative performance of various heat transfer augmentation methods used in constant power input systems is introduced. The analysis is based on the principle of minimizing the rate of total entropy generation. The heat transfer load (HTL), a parameter determined by the operating requirements of the heat dissipating process that indicates the difficulty of the heat transfer duty to be performed, is defined in the present study. By comparing the irreversibility distribution ratio (φ) of various configurations at a given heat transfer load, the most exergy efficient system can be selected. The data for three different types of fin configurations used in two constant power input applications (electronic equipment and internal turbine blade cooling) are utilized in demonstrating the technique. The results indicate which specific fin geometry of the particular configuration type analyzed will transfer the dissipated heat at the specified base surface temperature while requiring the least pumping power. Although the φ versus HTL criterion is applied to only fins in this study, the method can be extended to many other applications such as jet impingement cooling or mass transfer.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


Sign in / Sign up

Export Citation Format

Share Document