An Adaptive Centralized Approach to Control Chaotic and Hyperchaotic Dynamics of Smart Valves Network

Author(s):  
Peiman Naseradinmousavi ◽  
Hashem Ashrafiuon ◽  
Mohammad A. Ayoubi

Catastrophic chaotic and hyperchaotic dynamical behaviors have been experimentally observed in the so-called “smart valves” network, given certain critical parameters and initial conditions. The centralized network-based control of these coupled systems may effectively mitigate the harmful dynamics of the valve-actuator configuration which can be potentially caused by a remote set and would gradually affect the whole network. In this work, we address the centralized control of two bi-directional solenoid actuated butterfly valves dynamically coupled in series subject to the chaotic and hyperchaotic dynamics. An interconnected adaptive scheme is developed and examined to vanish both the chaotic and hyperchaotic dynamics and return the coupled network to its safe domain of operation.

2018 ◽  
Vol 13 (5) ◽  
Author(s):  
Peiman Naseradinmousavi ◽  
Hashem Ashrafiuon ◽  
Mostafa Bagheri

In this effort, we utilize a decentralized neuro-adaptive scheme in extinguishing both the chaotic and hyperchaotic dynamics of the so-called “Smart Valves” network. In particular, a network of two dynamically interconnected bidirectional solenoid actuated butterfly valves undergoes the harmful chaotic/hyperchaotic dynamics subject to some initial conditions and critical parameters. Crucial trade-offs, including robustness, computational burden, and practical feasibility of the control scheme, are thoroughly investigated. The advantages and shortcomings of the decentralized neuro-adaptive method are compared with those of the direct decentralized adaptive one to yield a computationally efficient, practically feasible, and robust scheme in the presence of the coupled harmful responses.


Author(s):  
Mohamed Gharib ◽  
Mansour Karkoub

Undesired vibrations in structures, buildings, and machines lead to reduction in the life of the system and greatly affects the safety of the occupying or operating personnel. In addition, economic and time losses could result from needed repairs or reconstruction. Many control techniques, active and passive, have been devised over the years to reduce/eliminate the vibrations in the aforementioned systems. Passive vibration control techniques are favorable over the active ones due to their simplicity, ease of implementation, cost, and power consumption. In dynamic structures, such as large buildings, passive control techniques are favored over their active counterparts. The most common types of passive control devices are tuned mass and impact dampers. The advocates of each of these devices boasts advantages of the others; however, there have been no systematic studies to compare and quantify the effectiveness of each of these types of devices as well as their suitability for specific applications. In this paper, a comparative study between the tuned mass dampers and impact dampers is conducted. A one-story structure is used to show the effectiveness of each of these devices in absorbing the vibrations of the structure. The coupled systems are modeled and simulated under free vibrations. The time responses are acquired using the same geometric parameters, excitation, and initial conditions. The comparisons are based on the settling time and amplitude decay rates of the primary system using each damper type. The numerical results show that both dampers can produce similar dampening effects if the parameters are optimized; however, correlating the dampers parameters is a challenging problem in the field of vibration and control.


2021 ◽  
Author(s):  
Lena Noack ◽  
Kristina Kislyakova ◽  
Colin Johnstone ◽  
Manuel Güdel ◽  
Luca Fossati

<p>Since the discovery of a potentially low-mass exoplanet around our nearest neighbour star Proxima Centauri, several works have investigated the likelihood of a shielding atmosphere and therefore the potential surface habitability of Proxima Cen b. However, outgassing processes are influenced by several different (unknown) factors such as the actual planet mass, mantle and core composition, and different heating mechanisms in the interior.<br>We aim to identify the critical parameters that influence the mantle and surface evolution of the planet over time, as well as to potentially constrain the time-dependent input of volatiles from mantle into the atmosphere.</p><p><br>To study the coupled star-planet evolution, we analyse the heating produced in the interior of Proxima Cen b due to induction heating, which strongly varies with both depth and latitude. We calculate different rotation evolutionary tracks for Proxima Centauri and investigate the change in its rotation period and magnetic field strength. Unlike the Sun, Proxima Centauri possesses a very strong magnetic field of at least a few hundred Gauss, which was likely higher in the past. <br>We apply an interior structure model for varying planet masses (derived from the unknown inclination of observation of the Proxima Centauri system) and iron weight fractions, i.e. different core sizes, in the range of observed Fe-Mg variations in the stellar spectrum. <br>We use a mantle convection model to study the thermal evolution and outgassing efficiency of Proxima Cen b. For unknown planetary parameters such as initial conditions we chose randomly selected values. We take into account heating in the interior due to variable radioactive heat sources and latitute- and radius-dependent induction heating, and compare the heating efficiency to tidal heating.</p><p><br>Our results show that induction heating may have been significant in the past, leading to local temperature increases of several hundreds of Kelvin (see Fig. 1). This early heating leads to an earlier depletion of the interior and volatile outgassing compared to if the planet would not have been subject to induction heating. We show that induction heating has an impact comparable to tidal heating when assuming latest estimates on its eccentricity. We furthermore find that the planet mass (linked to the planetary orbital inclination) has a first-order influence on the efficiency of outgassing from the interior.</p><p> </p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.53bcd48f2cff56572630161/sdaolpUECMynit/12UGE&app=m&a=0&c=314fe555893c77417d52bf9a6bd3825f&ct=x&pn=gnp.elif&d=1" alt="" width="307" height="339"> </p><p>Fig 1: Local induction heating and resulting temperature variations compared to a simulation without induction heating after 1 Gyr of thermal evolution for an example rocky planet of 1.8 Earth masses with an iron content of 20 wt-%.</p>


2019 ◽  
Vol 29 (07) ◽  
pp. 1950097 ◽  
Author(s):  
Yuman Zhang ◽  
Mei Guo ◽  
Gang Dou ◽  
Yuxia Li ◽  
Guanrong Chen

The [Formula: see text] (SBT) nanometer film can be used as a physical memristive component. Three oscillatory circuits built on the physical SBT memristor are proposed in this paper, one is self-excited oscillatory circuit and two are forced oscillatory circuits. These three oscillatory circuits have simple structures with complex dynamics. The self-excited oscillatory circuit can generate steady periodic oscillations; the first forced oscillatory circuit can generate relatively complex quasi-periodic oscillations, while the second can generate more complex dynamics such as chaotic oscillations. The impacts of the circuit parameter and initial state values of the SBT memristor on the dynamical behaviors of the three oscillatory circuits are investigated via numerical simulations. It is found that the SBT memristor can be used to design various memristor-based circuits. Specifically, in a flux-controlled memristor-based circuit, if an inductor is in parallel with the memristor, the order of the circuit is one less than the number of energy storage elements in the circuit. The equilibrium point of the circuit is different from the typical line equilibrium for autonomous circuits. The initial state value of the memristor has no impact on the steady state of the circuit. The same phenomena are observed for a charge-controlled memristor-based circuit, when a capacitor is in series with the memristor.


2001 ◽  
Vol 11 (06) ◽  
pp. 1723-1735 ◽  
Author(s):  
GUO-QUN ZHONG ◽  
KIM-FUNG MAN ◽  
KING-TIM KO

In this paper a variety of uncertainty phenomena in chaos synchronization, which are caused by the sensitive dependence on initial conditions and coupling strength, are numerically investigated. Two identical Chua's circuits are considered for both mutually- and unidirectionally-coupled systems. It is found that initial states of the system play an important role in chaos synchronization. Depending on initial conditions, distinct behaviors, such as in-phase synchronization, anti-phase synchronization, oscillation-quenching, and bubbling of attractors, may occur. Based on the findings, we clarify that the systems, which satisfy the standard synchronization criterion, do not necessarily operate in a synchronization regime.


2016 ◽  
Vol 26 (09) ◽  
pp. 1630023 ◽  
Author(s):  
Chandrakala Meena ◽  
K. Murali ◽  
Sudeshna Sinha

We consider star networks of chaotic oscillators, with all end-nodes connected only to the central hub node, under diffusive coupling, conjugate coupling and mean-field diffusive coupling. We observe the existence of chimeras in the end-nodes, which are identical in terms of the coupling environment and dynamical equations. Namely, the symmetry of the end-nodes is broken and coexisting groups with different synchronization features and attractor geometries emerge. Surprisingly, such chimera states are very wide-spread in this network topology, and large parameter regimes of moderate coupling strengths evolve to chimera states from generic random initial conditions. Further, we verify the robustness of these chimera states in analog circuit experiments. Thus it is evident that star networks provide a promising class of coupled systems, in natural or engineered contexts, where chimeras are prevalent.


2018 ◽  
Vol 28 (04) ◽  
pp. 1850050 ◽  
Author(s):  
Ling Zhou ◽  
Chunhua Wang ◽  
Xin Zhang ◽  
Wei Yao

By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter [Formula: see text]. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Hengguo Yu ◽  
Min Zhao

On the basis of the theories and methods of ecology and ordinary differential equation, a seasonally perturbed prey-predator system with the Beddington-DeAngelis functional response is studied analytically and numerically. Mathematical theoretical works have been pursuing the investigation of uniformly persistent, which depicts the threshold expression of some critical parameters. Numerical analysis indicates that the seasonality has a strong effect on the dynamical complexity and species biomass using bifurcation diagrams and Poincaré sections. The results show that the seasonality in three different parameters can give rise to rich and complex dynamical behaviors. In addition, the largest Lyapunov exponents are computed. This computation further confirms the existence of chaotic behavior and the accuracy of numerical simulation. All these results are expected to be of use in the study of the dynamic complexity of ecosystems.


Author(s):  
Sun Xiao-lin ◽  
Wang Zhan-xue ◽  
Zhou Li ◽  
Shi Jing-wei ◽  
Cheng Wen

In order to increase the survivability of the fighter aircraft, the serpentine nozzle has been applied in series of stealth bombers and unmanned aerial vehicles due to its excellent potentiality of evidently suppressing the infrared radiation signatures and radar cross section emitted by engine exhausts. Among the geometric parameters of the serpentine nozzle, the aspect ratio (AR) at the nozzle exit is one of the most critical parameters for the nozzle design as the infrared suppression effect could be greatly enhanced with the increment of AR by strengthening the mixing between the exhaust plume and atmosphere; the aim of this paper is to study the influence of the AR on the flow characteristics of the double serpentine nozzle. The flow features of six double serpentine convergent nozzles, i.e. AR = 3, 5, 7, 9, 11, 15 respectively, were numerically simulated with the shear stress transport κ–ω turbulent model adopted, which had been validated by the experimental data. The characteristics of internal flow and external jet, and the aerodynamic performances of these six nozzles were compared. Results show that the Ma contours at the symmetric plane are different due to the distinct flow accelerations caused by the change of the curvature and the duct height for diverse AR, and the surface pressure and the shock wave features are different correspondingly. The lateral divergence and the lateral convergence characteristics of the nozzle configuration lead to opposite lateral flow under diverse AR, and the change of lateral width induced different lateral pressure gradient, then lead to various lateral vortex distributions. The length of potential core is the contribution of the comprehensive effects of geometry parameters, and it is decreased with the increase of AR due to the dominated effect of the increased mixing area; however, the declining rate is slowed down. The AR of 5 should be chosen for the best aerodynamic performance of the double serpentine nozzle under the qualifications to completely shield the high-temperature turbine.


Author(s):  
Shamit Bakshi ◽  
T. N. C. Anand ◽  
R. V. Ravikrishna

In this paper, detailed computational study is presented which helps to understand and improve the fuel-air mixing in a new direct-mixture-injection two-stroke engine. This new air-assisted injection system-based two-stroke engine is being developed at the Indian Institute of Science, Bangalore over the past few years. It shows the potential to meet emission norms such as EURO-II and EURO-III and also deliver satisfactory performance. This work proposes a comprehensive strategy to study the air-fuel mixing process in this engine and shows that this strategy can be potentially used to improve the engine performance. A three-dimensional compressible flow code with standard k–ε turbulence model with wall functions is developed and used for this modeling. To account for the moving boundary or piston in the engine cylinder domain, a non-stationary and deforming grid is used in this region with stationary cells in the ports and connecting ducts. A flux conservation scheme is used in the domain interface to allow the in-cylinder moving mesh to slide past the fixed port meshes. The initial conditions for flow parameters are taken from the output of a three-dimensional scavenging simulation. The state of the inlet charge is obtained from a separate modeling of the air-assisted injection system of this engine. The simulation results show that a large, near-stoichiometric region is present at most operating conditions in the cylinder head plane. The state of the in-cylinder charge at the onset of ignition is studied leading to a good understanding of the mixing process. In addition, sensitivity of two critical parameters on the mixing and stratification is investigated. The suggested parameters substantially enhance the flammable proportion at the onset of combustion. The predicted P–θ from a combustion simulation supports this recommendation.


Sign in / Sign up

Export Citation Format

Share Document