scholarly journals Erratum: “The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies” (ASME J. Biomech. Eng., 2017, 139(5), p. 051002; DOI: 10.1115/1.4036146) to Paper Number BIO-16-1363

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
A. A. Badachhape ◽  
R. J. Okamoto ◽  
R. S. Durham ◽  
D. Efron ◽  
S. J. Nadell ◽  
...  
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Andrew A. Badachhape ◽  
Ruth J. Okamoto ◽  
Ramona S. Durham ◽  
Brent D. Efron ◽  
Sam J. Nadell ◽  
...  

In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI.


2013 ◽  
Vol 726-731 ◽  
pp. 1566-1572 ◽  
Author(s):  
Shi Qiang Ding ◽  
Qing Na Li ◽  
Xin Rong Pang ◽  
Ji Run Xu

The characteristics of flocs aggregated in flocculation have been paid more and more attention for a long time. In this paper, a new classification and analyses method dealing with the flocs is developed. The flocs formed after flocculation is divided into four kinds, including the left primary particles, linear flocs with all component particles in a line, planar flocs with all component particles on a plane and volumetric flocs with all component particles in a three-dimensional space. By analyzing the formation approaches of different kind of flocs regardless of the floc breakage, the number of every kind of floc is analyzed to be related with the suspension concentration mathematically. After comparing the different items in the models describing the relationship of floc number and concentration, a series of simplified expressions are presented. Lastly, a mathematical equation relating the measurable suspension viscosity with the numbers of different flocs is obtained.


Author(s):  
Karen Perta ◽  
Eileen Kalmar ◽  
Youkyung Bae

Purpose The aim of the study was to update our information regarding the salpingopharyngeus (SP) muscle using cadaveric and in vivo magnetic resonance imaging (MRI) data. Primary objectives were to (a) observe the presence/absence of the muscle and (b) quantify and describe its dimensions and course. Method SP specimens from 19 cadavers (10 women, nine men) were analyzed. Following head bisection, measurements of SP, including width of the cartilaginous attachment (CW) and width of the superior muscle base (SMW), were taken before and after removal of the overlying mucosa. In addition, SP was analyzed in 15 healthy subjects (eight men, seven women) using high-resolution three-dimensional MRI data. CW and SMW measures were replicated in the paraxial MRI view. Results The presence of the salpingopharyngeal fold and muscle was confirmed bilaterally in all cadaveric and living subjects. Following mucosa removal, mean cadaveric CW and SMW measurements were 5.6 and 3.8 mm, respectively. Mean in vivo CW and SMW were 6.1 and 3.7 mm, respectively. Results from the hierarchical regression analyses revealed that, in both cadaveric and living groups, SMW is dependent on the relationship between age and body weight, after controlling for sex. Conclusions The salpingopharyngeal fold and SP muscle are always present bilaterally and can be quantified at the superior origin using both cadaveric and in vivo three-dimensional MRI data. Though both the superior origin and inferior course of SP are highly variable, the size of the SP muscle is dependent on characteristics known to affect muscle fibers, such as the relationship between age and body weight. Given the consistent and quantifiable presence of the SP muscle, its potential role in velopharyngeal function for speech and swallowing is reconsidered. Supplemental Material https://doi.org/10.23641/asha.14347859


Hepatology ◽  
2019 ◽  
Vol 71 (2) ◽  
pp. 510-521 ◽  
Author(s):  
Alina M. Allen ◽  
Vijay H. Shah ◽  
Terry M. Therneau ◽  
Sudhakar K. Venkatesh ◽  
Taofic Mounajjed ◽  
...  

2020 ◽  
Author(s):  
Jinmei Zheng ◽  
Bin Sun ◽  
Ruolan Lin ◽  
Yongqi Teng ◽  
Xihai Zhao ◽  
...  

Abstract Background Atherosclerotic plaques are often present in regions with complicated flow patterns. Vascular morphology plays a role in hemodynamics. In this study, we investigate the relationship between the geometry of the vertebrobasilar artery system and the basilar artery (BA) plaque prevalence.Methods We enrolled 290 patients with posterior circulation ischemic stroke. We distinguished four configurations of the vertebrobasilar artery: Walking, Tuning Fork, Lambda, and No Confluence. The diameter of the vertebral artery (VA) and the number of bends in the intracranial VA segment was assessed using three-dimensional time-of-flight magnetic resonance angiography. We differentiated between multi-bending (≥ 3 bends) and oligo-bending (< 3 bends) VAs. High-resolution magnetic resonance imaging was used to evaluate BA plaques. Logistic regression models examined the relationship between the geometry type and BA plaque prevalence.Results After adjusting for sex, age, body mass index ≥ 28, hypertension, and diabetes mellitus, the Walking, Lambda, and No Confluence geometries were associated with the presence of BA plaque. Patients with multi-bending VAs in both the Walking (71.43%, P = 0.003) and Lambda group (40.43%, P = 0.018) had more plaques compared to patients with oligo-bending VAs in these groups. In the Lambda group, the diameter difference between the VAs was larger in patients with BA plaques than that in patients without BA plaques (1.4 mm vs. 0.9 mm, P < 0.001).Conclusions The Walking, Lambda, and No Confluence geometry, ≥ 3 bends in the VAs, and a large diameter difference between the VAs were associated with the presence of BA plaque.


2020 ◽  
Vol 11 ◽  
Author(s):  
Irena Andršová ◽  
Katerina Hnatkova ◽  
Martina Šišáková ◽  
Ondřej Toman ◽  
Peter Smetana ◽  
...  

The electrocardiographic (ECG) assessment of the T peak–T end (Tpe) intervals has been used in many clinical studies, but several related physiological aspects have not been reported. Specifically, the sources of the Tpe differences between different ECG leads have not been systematically researched, the relationship of Tpe duration to underlying heart rate has not been firmly established, and little is known about the mutual correspondence of Tpe intervals measured in different ECG leads. This study evaluated 796,620 10-s 12-lead ECGs obtained from long-term Holters recorded in 639 healthy subjects (311 female) aged 33.8 ± 9.4 years. For each ECG, transformation to orthogonal XYZ lead was used to measure Tpe in the orthogonal vector magnitude (used as a reference for lead-to-lead comparisons) and to construct a three-dimensional T wave loop. The loop roundness was expressed by a ratio between its circumference and length. These ratios were significantly related to the standard deviation of Tpe durations in different ECG leads. At the underlying heart rate of 60 beats per minute, Tpe intervals were shorter in female than in male individuals (82.5 ± 5.6 vs 90.0 ± 6.5 ms, p &lt; 0.0001). When studying linear slopes between Tpe intervals measured in different leads and the underlying heart rate, we found only minimal heart rate dependency, which was not systematic across the ECG leads and/or across the population. For any ECG lead, positive Tpe/RR slope was found in some subjects (e.g., 79 and 25% of subjects for V2 and V4 measurements, respectively) and a negative Tpe/RR slope in other subjects (e.g., 40 and 65% for V6 and V5, respectively). The steepest positive and negative Tpe/RR slopes were found for measurements in lead V2 and V4, respectively. In all leads, the Tpe/RR slope values were close to zero, indicating, on average, Tpe changes well below 2 ms for RR interval changes of 100 ms. On average, longest Tpe intervals were measured in lead V2, the shortest in lead III. The study concludes that the Tpe intervals measured in different leads cannot be combined. Irrespective of the measured ECG lead, the Tpe interval is not systematically heart rate dependent, and no heart rate correction should be used in clinical Tpe investigations.


2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


1986 ◽  
Vol 6 (2) ◽  
pp. 301-307 ◽  
Author(s):  
J Grafman ◽  
A Salazar ◽  
H Weingartner ◽  
S Vance ◽  
D Amin

Sign in / Sign up

Export Citation Format

Share Document