Buckling of Magnetically Formed Filler Fiber Columns Under Compression Increases Thermal Resistance of Soft Polymer Composites

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Matthew Ralphs ◽  
Chandler Scheitlin ◽  
Robert Y. Wang ◽  
Konrad Rykaczewski

Thermally conductive soft composites are in high demand, and aligning the fill material is a potential method of enhancing their thermal performance. In particular, magnetic alignment of nickel particles has previously been demonstrated as an easy and effective way to improve directional thermal conductivity of such composites. However, the effect of compression on the thermal performance of these materials has not yet been investigated. This work investigates the thermal performance of magnetically aligned nickel fibers in a soft polymer matrix under compression. The fibers orient themselves in the direction of the applied magnetic field and align into columns, resulting in a 3× increase in directional thermal conductivity over unaligned composites at a volume fraction of 0.15. Nevertheless, these aligned fiber columns buckle under strain resulting in an increase in the composite thermal resistance. These results highlight potential pitfalls of magnetic filler alignment when designing soft composites for applications where strain is expected such as thermal management of electronics.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1120
Author(s):  
Virginija Skurkyte-Papieviene ◽  
Ausra Abraitiene ◽  
Audrone Sankauskaite ◽  
Vitalija Rubeziene ◽  
Julija Baltusnikaite-Guzaitiene

Phase changing materials (PCMs) microcapsules MPCM32D, consisting of a polymeric melamine-formaldehyde (MF) resin shell surrounding a paraffin core (melting point: 30–32 °C), have been modified by introducing thermally conductive additives on their outer shell surface. As additives, multiwall carbon nanotubes (MWCNTs) and poly (3,4-ethylenedioxyoxythiophene) poly (styrene sulphonate) (PEDOT: PSS) were used in different parts by weight (1 wt.%, 5 wt.%, and 10 wt.%). The main aim of this modification—to enhance the thermal performance of the microencapsulated PCMs intended for textile applications. The morphologic analysis of the newly formed coating of MWCNTs or PEDOT: PSS microcapsules shell was observed by SEM. The heat storage and release capacity were evaluated by changing microcapsules MPCM32D shell modification. In order to evaluate the influence of the modified MF outer shell on the thermal properties of paraffin PCM, a thermal conductivity coefficient (λ) of these unmodified and shell-modified microcapsules was also measured by the comparative method. Based on the identified optimal parameters of the thermal performance of the tested PCM microcapsules, a 3D warp-knitted spacer fabric from PET was treated with a composition containing 5 wt.% MWCNTs or 5 wt.% PEDOT: PSS shell-modified microcapsules MPCM32D and acrylic resin binder. To assess the dynamic thermal behaviour of the treated fabric samples, an IR heating source and IR camera were used. The fabric with 5 wt.% MWCNTs or 5 wt.% PEDOT: PSS in shell-modified paraffin microcapsules MPCM32D revealed much faster heating and significantly slower cooling compared to the fabric treated with the unmodified ones. The thermal conductivity of the investigated fabric samples with modified microcapsules MPCM32D has been improved in comparison to the fabric samples with unmodified ones. That confirms the positive influence of using thermally conductive enhancing additives for the heat transfer rate within the textile sample containing these modified paraffin PCM microcapsules.


Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


Author(s):  
Shenghui Lei ◽  
Alexandre Shen ◽  
Ryan Enright

Silicon photonics has emerged as a scalable technology platform for future optotelectronic communication systems. However, the current use of SiO2-based silicon-on-insulator (SOI) substrates presents a thermal challenge to integrated active photonic components such as lasers and semiconductor optical amplifiers due to the poor thermal properties of the buried SiO2 optical cladding layer beneath these devices. To improve the thermal performance of these devices, it has been suggested that SiO2 be replaced with aluminum nitride (AlN); a dielectric with suitable optical properties to function as an effective optical cladding that, in its crystalline state, demonstrates a high thermal conductivity (∼100× larger than SiO2 in current SOI substrates). On the other hand, the tuning efficiencies of thermally-controlled optical resonators and phase adjusters, crucial components for widely tunable lasers and modulators, are directly proportional to the thermal resistance of these devices. Therefore, the low thermal conductivity buried SiO2 layer in the SOI substrate is beneficial. Moreover, to further improve the thermal performance of these devices air trenches have been used to further thermally isolate these devices, resulting in up to ∼10× increase in tuning efficiency. Here, we model the impact of changing the buried insulator on a SOI substrate from SiO2 to high quality AlN on the thermal performance of a MRR. We map out the thermal performance of the MRR over a wide range of under-etch levels using a thermo-electrical model that incorporates a pseudo-etching approach. The pseudo-etching model is based on the diffusion equation and distinguishes the regions where substrate material is removed during device fabrication. The simulations reveal the extent to which air trenches defined by a simple etch pattern around the MRR device can increase the thermal resistance of the device. We find a critical under-etch below which no benefit is found in terms of the MRR tuning efficiency. Above this critical under-etch, the tuning efficiency increases exponentially. For the SiO2-based MRR, the thermal resistance increases by ∼7.7× between the un-etched state up to the most extreme etch state. In the unetched state, the thermal resistance of the AlN-based MRR is only ∼4% of the SiO2-based MRR. At the extreme level of under-etch, the thermal resistance of the AlN-based MRR is still only ∼60% of the un-etched SiO2-based MRR. Our results suggest the need for a more complex MRR thermal isolation strategy to significantly improve tuning efficiencies if an AlN-based SOI substrate is used.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1157-1171 ◽  
Author(s):  
Sangbeom Cho ◽  
Venky Sundaram ◽  
Rao Tummala ◽  
Yogendra Joshi

Purpose – The functionality of personal mobile electronics continues to increase, in turn driving the demand for higher logic-to-memory bandwidth. However, the number of inputs/outputs supported by the current packaging technology is limited by the smallest achievable electrical line spacing, and the associated noise performance. Also, a growing trend in mobile systems is for the memory chips to be stacked to address the growing demand for memory bandwidth, which in turn gives rise to heat removal challenges. The glass interposer substrate is a promising packaging technology to address these emerging demands, because of its many advantages over the traditional organic substrate technology. However, glass has a fundamental limitation, namely low thermal conductivity (∼1 W/m K). The purpose of this paper is to quantify the thermal performance of glass interposer-based electronic packages by solving a multi-scale heat transfer problem for an interposer structure. Also, this paper studies the possible improvement in thermal performance by integrating a fluidic heat spreader or vapor chamber within the interposer. Design/methodology/approach – This paper illustrates the multi-scale modeling approach applied for different components of the interposer, including Through Package Vias (TPVs) and copper traces. For geometrically intricate and repeating structures, such as interconnects and TPVs, the unit cell effective thermal conductivity approach was used. For non-repeating patterns, such as copper traces in redistribution layer, CAD drawing-based thermal resistance network analysis was used. At the end, the thermal performance of vapor chamber integrated within a glass interposer was estimated by using an enhanced effective thermal conductivity, calculated from the published thermal resistance data, in conjunction with the analytical expression for thermal resistance for a given geometry of the vapor chamber. Findings – The limitations arising from the low thermal conductivity of glass can be addressed by using copper structures and vapor chamber technology. Originality/value – A few reports can be found on thermal performance of glass interposers. However thermal characteristics of glass interposer with advanced cooling technology have not been reported.


Author(s):  
Tomer Israeli ◽  
T. Agami Reddy ◽  
Young I. Cho

This paper reports on preliminary experimental results on using nanofluids to enhance the thermal performance of heat pipes. Our experience with preparing copper oxide (CuO) nanofluids is described. Contrary to earlier studies which report infinite shelf life, we found that nanofluid stability lasted for about three weeks only; an issue which merits further study. We have also conducted various experiments to measure the variation of thermal conductivity and surface tension with CuO nanofluid concentration. Actual experiments on nanofluid heat pipes were also performed which indicated an average 12.5% decrease in the overall thermal resistance of the heat pipe using nanofluid of 3% vol concentration. This observed improvement is fairly consistent with our predictions using a simple analytical thermal network model for heat pipe overall resistance and the measured nanofluid conductivity. The results, though encouraging, need more careful and elaborate experimental studies before the evidence can be deemed conclusive.


2007 ◽  
Vol 129 (4) ◽  
pp. 469-472 ◽  
Author(s):  
Hong He ◽  
Renli Fu ◽  
Yanchun Han ◽  
Yuan Shen ◽  
Deliu Wang

Traditionally, large quantities of ceramic fillers are added to polymers in order to obtain high thermally conductive polymer composites, which are used for electronic encapsulants. However, that is not cost effective enough. In this study, Si3N4 particle filled epoxy composite with a novel structure was fabricated by a processing method and structure design. Epoxy resin used in particle form was obtained by premixing and crushing. Different particle sizes were selected by sieving. High thermal conductivity was achieved at relative low volume fraction of the filler. The microstructure of the composites indicates that a continuous network is formed by the filler, which mainly completes the heat conduction. Thermal conductivity of the composites increases as the filler content increases, and the samples exhibit a highest thermal conductivity of 1.8W∕mK at 30% volume fraction of the filler in the composites using epoxy particles of 2mm. The composites show low dielectric constant and low dielectric loss.


2000 ◽  
Author(s):  
V. H. Adams ◽  
V. A. Chiriac ◽  
T.-Y. Tom Lee

Abstract Computational Fluid Dynamics (CFD) simulations were conducted to characterize the thermal performance of Molded Array Plastic Ball Grid Array (MAP PBGA) packages for hand-held applications. Due to size constraints, these PBGA packages tend to have fine pitch solder ball arrays and small overall size. Thermal analysis is required to assess the design risks associated with this trend toward smaller size and increasing power dissipation requirements. A conjugate heat transfer problem, in which radiative losses from the exposed surfaces of the package and the printed wiring board to the walls of the wind tunnel, was solved for horizontal natural convection cooling conditions. Thermal model assumptions and development for the MAP PBGA package are provided. The model is benchmarked with measurements obtained for a 64 I/O 0.8 mm pitch, 8 mm MAP PBGA. Predictions for junction-to-ambient thermal resistance were within 10% of measured values. Baseline simulations were conducted for 0.8 mm pitch MAP PBGA packages with substrate/die size combinations in the range of 6 to 12 mm substrate size and 3.81 to 7.62 mm die size. Junction-to-ambient thermal resistances varied over the range of 28.8 °C/W to 62.4 °C/W. Methods to improve thermal performance of these packages were investigated. Previous work indicated that effective conduction to the substrate by heat spreaders, metallic lids, mold compound, heat sinks, and their combinations promoted thermal performance. A necessary further step is to understand how effective area for heat spreading inside the package affects its thermal behavior, while varying the die size for package configurations with and without heat spreader. Studies were conducted to evaluate thermal performance improvement through the use of a copper heat spreader on the package top surface as it is affected by die size, package size, and substrate effective thermal conductivity. Substrate effective thermal conductivity is varied through the use of two and four layer substrates with thermal vias under the die. Results show a modest 1% to 15% reduction in junction-to-ambient thermal resistance for the MAP PBGA package sizes of interest.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1348-1351
Author(s):  
Sha Sha Dong ◽  
Xiao Ping Feng

The thermal performance of perforated brick is affected by various factors, thermal conductivity, the holes rates, the pass design and etc. included. In order to analyze the impact of the pass design on the thermal performance of bidirectional thermal insulation bricks, the two-dimensional finite element model was developed using ANSYS. The simulated result shows that existence of vertical holes can enhance the thermal resistance in the longer dimension of the perforated brick. Under the condition of the same holes rates, narrowing the width of the vertical holes helps to improve the thermal resistance in the shorter dimension of the perforated brick. The function of these blocks are extremely influenced by the distribution of the vertical holes, the concentrated better than the both-sided when it comes to advancing the whole function.


2004 ◽  
Vol 126 (4) ◽  
pp. 449-456 ◽  
Author(s):  
K. Ramakrishna ◽  
T.-Y. Tom Lee

Enhancements to thermal performance of FC-PBGA packages due to underfill thermal conductivity, controlled collapse chip connection (C4) pitch, package to printed wiring board (PWB) interconnection through thermal balls, a heat spreader on the backside of the die, and an overmolded die with and without a heat spreader have been studied by solving a conjugate heat transfer problem. These enhancements have been investigated under natural and forced convection conditions for freestream velocities up to 2 m/s. The following ranges of parameters have been covered in this study: substrate size: 25–35 mm, die size: 6.19×7.81 mm (48 mm2 area) and 9.13×12.95 mm (118 mm2 area), underfill thermal conductivity: 0.6–3.0 W/(m K), C4 pitch: 250 μm and below, no thermal balls to 9×9 array of thermal balls on 1.27 mm square pitch, and with copper heat spreader on the back of a bare and an overmolded die. Based on our previous work, predictions in this study are expected to be within ±10% of measured data. The conclusions of the study are: (i) Thermal conductivity of the underfill in the range 0.6 to 10 W/(m K) has negligible effect on thermal performance of FC-PBGA packages investigated here. (ii) Thermal resistances decrease 12–15% as C4 pitch decreases below 250 μm. This enhancement is smaller with increase in die area. (iii) Thermal balls connected to the PTHs in the PWB decrease thermal resistance of the package by 10–15% with 9×9 array of thermal balls and PTHs compared to no thermal balls. The effect of die size on this enhancement is more noticeable on junction to board thermal resistance, Ψjb, than the other two package thermal metrics. (iv) Heat spreader on the back of the die decreases junction-to-ambient thermal resistance, Θja, by 6% in natural convection and by 25% in forced convection. (v) An overmolded die with a heat spreader provides better a thermal enhancement than a heat spreader on a bare die for freestream velocities up to about 1 m/s. Beyond 1 m/s, a heat spreader on bare die has better thermal performance.


Sign in / Sign up

Export Citation Format

Share Document