scholarly journals Hydrodynamic Lubricant Film Separation During Codirectional and Counter-Directional Rotations of Disengaged Wet Clutch Packs

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
N. J. Morris ◽  
R. Patel ◽  
H. Rahnejat

Abstract The parasitic drag losses incurred by wet clutches, used in transmission systems, can significantly affect vehicular powertrain efficiency. This paper presents a novel implicit solution for hydrodynamic parasitic drag losses of disengaged clutches. These are generated by conjunctional friction, taking into account lubricant film separation during codirectional and counter-directional disk pair rotations. Lubricant film rupture is considered through application of incipient reverse flow boundary condition, which is representative of lubricant film separation. The results point to the operating conditions at which significant power losses occur. In particular, the time efficient model is able to represent the small losses incurred during codirectional rotation of disk pairs.

1990 ◽  
Vol 112 (2) ◽  
pp. 330-338 ◽  
Author(s):  
N. Mittwollen ◽  
J. Glienicke

The governing equations for the performance prediction of oil film journal bearings in high speed turbomachinery are elaborated. The lubricant temperature and viscosity are admitted to vary in all three dimensions and a possible reverse flow is allowed for. Laminar-turbulent flow transition, thermal groove mixing and film rupture are taken into account with refined models. The computational methods are assembled in a corresponding computer code. A successful verification is accomplished by comparing the theoretical results with recent experimental data. The calculation of the running performance of technically important multi-lobe bearing designs shows the significance of the maximum film temperature as failure criterion in severe operating conditions; flow transition and hot oil carry-over have considerable effects.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 324
Author(s):  
Carmelo Barbagallo ◽  
Santi Agatino Rizzo ◽  
Giacomo Scelba ◽  
Giuseppe Scarcella ◽  
Mario Cacciato

This work presents a step-by-step procedure to estimate the lifetime of discrete SiC power MOSFETs equipping three-phase inverters of electric drives. The stress of each power device when it is subjected to thermal jumps from a few degrees up to about 80 °C was analyzed, starting from the computation of the average power losses and the commitment of the electric drive. A customizable mission profile was considered where, by accounting the working conditions of the drive, the corresponding average power losses and junction temperatures of the SiC MOSFETs composing the inverter can be computed. The tool exploits the Coffin–Manson theory, rainflow counting, and Miner’s rule for the lifetime estimation of the semiconductor power devices. Different operating scenarios were investigated, underlying their impact on the lifetime of SiC MOSFETs devices. The lifetime estimation procedure was realized with the main goal of keeping limited computational efforts, while providing an effective evaluation of the thermal effects. The method enables us to set up any generic mission profile from the electric drive model. This gives us the possibility to compare several operating scenario of the drive and predict the worse operating conditions for power devices. Finally, although the lifetime estimation tool was applied to SiC power MOSFET devices for a general-purpose application, it can be extended to any type of power switch technology.


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 345-353
Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
A. N. Alimova

Determination of the main characteristics of the topology and technical condition of equipment underoperating conditions is necessary for analyzing and assessing power and electricity losses in intrashoplow-voltage industrial power supply networks. A comparative analysis of the technical characteristicsof automatic circuit breakers VA57-31 (KEAZ), NSX100 TM-D (Schneider Electric), DPX3 160 (Legrand), Tmax XT1 TMD (ABB) has shown that the main technical parameters of the machines are close in their values. At that it has been found out that automatic switches of the BA57-31 series have the lowest value of power losses per pole (7.5 W), whereas the automatic switches of the Tmax XT1 TMD series have the highest value (10 W). Thus, under the operating conditions of the equipment, the lowest value of power and electricity losses is characteristic of low-voltage electrical networks with installed circuit breakers of the BA57-31 series, and the highest value of losses is noted in in-shop systems with installed circuit breakers Tmax XT1 TMD. Using catalog data, the dependences of active power losses in circuit breakers on rated currents have been established; the algorithms have been developed and the obtained dependences have been modeled using approximating functions. The standard deviation of the compiled approximating functions has been calculated. Analytical expressions of the dynamics of power losses per pole have been determined as a function of the rated current. The graphical dependences of the investigated parameters of low-voltage equipment have been presented. The developed models are recommended to be used to increase the reliability of the assessment and refinement of the amount of active power and electricity losses in low-voltage electrical networks of industrial power supply systems, agrotechnical complexes, and enterprises of the public utility sector.


Author(s):  
SR Bewsher ◽  
M Mohammadpour ◽  
H Rahnejat ◽  
G Offner ◽  
O Knaus

In order to accurately predict the lubricant film thickness and generated friction in any tribological contact, it is important to determine appropriate boundary conditions, taking into account the oil availability and extent of starvation. This paper presents a two-dimensional hydrodynamic model of a piston ring pack for prediction of lubricant film thickness, friction and total power loss. The model takes into account starvation caused by reverse flow at the conjunctional inlet wedge, and applied to a ring pack, comprising a compression and scraper ring. Inlet boundaries are calculated for an engine cycle of a four-cylinder, four-stroke gasoline engine operating at 1500 r/min with conditions pertaining to the New European Drive Cycle. The analysis shows the two main sources of starvation: first, due to a physical lack of inlet meniscus and second, due to reverse flow at the inlet wedge significantly affecting the prevailing conditions from the generally assumed idealised boundary conditions. Such an approach has not hitherto been reported in literature.


Author(s):  
Adamos Adamou ◽  
Colin Copeland

Abstract Augmented backside cooling refers to the enhancement of the backside convection of a combustor liner using extended heat transfer surfaces to fully utilise the cooling air by maximising the heat transfer to pumping ratio characteristic. Although film cooling has and still is widely used in the gas turbine industry, augmented backside cooling has been in development for decades now. The reason for this, is to reduce the amount of air used for liner cooling and to also reduce the emissions caused by using film cooling in the primary zones. In the case of micro gas turbines, emissions are of even greater importance, since the regulations for such engines will most likely become stricter in the following years due to a global effort to reduce emission. Furthermore, the liners investigated in this paper are for a 10 kWe micro turbine, destine for various potential markets, such as combine heat and power for houses, EV hybrids and even small UAVs. The majority of these markets require long service intervals, which in turn requires the combustor liners to be under the least amount of thermal stress possible. The desire to also increase combustor inlet temperatures with the use of recuperated exhaust gases, which in turn increase the overall system efficiency, limits the cooling effectiveness of the inlet air. Due to all these reasons, an advanced form of augmented backside cooling would be of substantial significance in such a system. Currently some very simple designs are used in the form of straight plain fins, transverse strips or other similar geometries, but the creation of high heat transfer efficiency surfaces in such small sizes becomes very difficult with traditional subtractive manufacturing methods. When using additive manufacturing though these types of surfaces are not an issue. This paper covers the comparison of experimental results with conjugate heat transfer CFD models and empirical heat balance models for two different AM liner cooling geometries and an AM blank liner. The two cooling fin geometries include a rotating plain fin and an offset strip fin. The liners were tested in an AM built reverse flow radial swirl stabilised combustion chamber at a variety of operating conditions. During the experiments the surfaces were compared using a thermal camera to record the outer liner temperature which was viewed through a quartz outer casing. The experimental results showed that the cooling surfaces were effective at reducing the liner temperatures with minimal pressure losses for multiple operating points. Those results were then compared against the conjugate heat transfer CFD models and the empirical calculations used to design the surfaces initially. From this comparison, it was noticed both the CFD and empirical calculations under predicted the wall temperatures. This is thought to be due to inaccuracies in the predicted flame temperatures and the assumed emissivity values used to calibrate the thermal imaging camera. Further uncertainties arise from the assumption of a constant air and hot gas temperature and mass flow along the cooling surfaces and the lack of data for the surface roughness of the parts.


Sign in / Sign up

Export Citation Format

Share Document