A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Ashreet Mishra ◽  
Agwu A. G. Nnanna

Abstract Studies on carbon nanotubes (CNT), Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water production. This work for the first time reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane (PU) membrane with immobilized activated carbon and CNT. A simulated solar light of 1 kW ∼1 sun was used. The rate of evaporation, temporal and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality, and salinity were performed. Experimental evidence showed that activated carbon has potential in water purification. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 vol %. We also obtained a 160% increase in steam production rate at 60% concentration of activated carbon when compared with de-ionized water.

Author(s):  
Ashreet Mishra ◽  
A. G. Agwu Nnanna

A number of studies on CNT, Au and Ag solar enabled steam generation with potential application in water purification, distillation and sterilization of medical equipment. The key challenge with these nanoparticles is cost of production hence limiting its wide application for clean water production. This work for the first time, reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane membrane with immobilized activated carbon and CNT. A simulated solar light of 1 KW ∼1 Sun was used. The rate of evaporation, temporal and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality and salinity were performed. Experimental evidence showed that activated carbon has potential. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 % vol. We also obtained a 160 % increase in steam production rate at 60 % concentration of activated carbon when compared with D.I water.


2012 ◽  
Vol 111-112 ◽  
pp. 246-253 ◽  
Author(s):  
Ana Rey ◽  
Diego H. Quiñones ◽  
Pedro M. Álvarez ◽  
Fernando J. Beltrán ◽  
Pawel K. Plucinski

2020 ◽  
Vol 167 ◽  
pp. 01003
Author(s):  
Jin-Chung Sin ◽  
Ka-Wey Ong ◽  
Sze-Mun Lam ◽  
Honghu Zeng

ZnO nanosponge was synthesized for the first time via a green method using Musa acuminata peel extract. The X-ray diffraction, Raman, energy dispersive X-ray and fourier-transform infrared analyses demonstrated that the synthesized sample was well crystallized and possessed hexagonal wurtzite pure ZnO. The field-emission scanning electron microscopy observation revealed that the ZnO nanosponge was assembled by aggregated spherical particles with sizes of 30-128 nm. Under simulated solar light irradiation, the ZnO nanosponge acted as an excellent photocatalyst for methylene blue and rhodamine B mixtures degradation compared to commercially available TiO2-P25. The enhanced photocatalytic activities of ZnO sample can be attributed to the high generation of hydroxyl radicals as a result of its unique sponge-like porous structure with large surface area. Furthermore, the ZnO nanosponge can be used effectively on the photodegradation of real textile dye wastewater. These characteristics showed that the biosynthesized ZnO nanosponge can be employed as a photocatalyst for environmental remediation.


Author(s):  
Jing Wu ◽  
Xiaofeng Li ◽  
Tingting Zhang ◽  
Xiao-Peng Li ◽  
Wei Li ◽  
...  

Solar steam generation devices cannot work properly under weak solar light irradiation and even no solar light. Herein, an all-weather-available electrothermal and solarthermal wood-derived porous carbon-based water steam generation device...


2016 ◽  
Vol 45 (4) ◽  
pp. 1467-1475 ◽  
Author(s):  
Dongguang Yin ◽  
Lu Zhang ◽  
Xianzhang Cao ◽  
Zhiwen Chen ◽  
Jingxiu Tang ◽  
...  

A novel nanocomposite photocatalyst NaLuF4:Gd,Yb,Tm@SiO2@Ag@TiO2 was developed for the first time.


2017 ◽  
pp. 34-47
Author(s):  
Hoi Le Quoc ◽  
Nam Pham Xuan ◽  
Tuan Nguyen Anh

The study was targeted at developing a methodology for constructing a macroeconomic performance index at a provincial level for the first time in Vietnam based on 4 groups of measurements: (i) Economic indicators; (ii) oriented economic indicators; (iii) socio-economic indicators; and (iv) economic - social – institutional indicators. Applying the methodology to the 2011 - 2015 empirical data of all provinces in Vietnam, the research shows that the socio-economic development strategy implemented by those provinces did not provide balanced outcomes between growth and social objectives, sustainability and inclusiveness. Many provinces focused on economic growth at the cost of structural change, equality and institutional transformation. In contrast, many provinces were successful in improving equality but not growth. Those facts threaten the long-term development objectives of the provinces.


2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


Author(s):  
Mark Blaxill ◽  
Toby Rogers ◽  
Cynthia Nevison

AbstractThe cost of ASD in the U.S. is estimated using a forecast model that for the first time accounts for the true historical increase in ASD. Model inputs include ASD prevalence, census population projections, six cost categories, ten age brackets, inflation projections, and three future prevalence scenarios. Future ASD costs increase dramatically: total base-case costs of $223 (175–271) billion/year are estimated in 2020; $589 billion/year in 2030, $1.36 trillion/year in 2040, and $5.54 (4.29–6.78) trillion/year by 2060, with substantial potential savings through ASD prevention. Rising prevalence, the shift from child to adult-dominated costs, the transfer of costs from parents onto government, and the soaring total costs raise pressing policy questions and demand an urgent focus on prevention strategies.


2021 ◽  
Vol 1 ◽  
pp. 131-140
Author(s):  
Federica Cappelletti ◽  
Marta Rossi ◽  
Michele Germani ◽  
Mohammad Shadman Hanif

AbstractDe-manufacturing and re-manufacturing are fundamental technical solutions to efficiently recover value from post-use products. Disassembly in one of the most complex activities in de-manufacturing because i) the more manual it is the higher is its cost, ii) disassembly times are variable due to uncertainty of conditions of products reaching their EoL, and iii) because it is necessary to know which components to disassemble to balance the cost of disassembly. The paper proposes a methodology that finds ways of applications: it can be applied at the design stage to detect space for product design improvements, and it also represents a baseline from organizations approaching de-manufacturing for the first time. The methodology consists of four main steps, in which firstly targets components are identified, according to their environmental impact; secondly their disassembly sequence is qualitatively evaluated, and successively it is quantitatively determined via disassembly times, predicting also the status of the component at their End of Life. The aim of the methodology is reached at the fourth phase when alternative, eco-friendlier End of Life strategies are proposed, verified, and chosen.


Sign in / Sign up

Export Citation Format

Share Document