Control of Period-Doubling and Chaos in Varying Compliance Resonances for a Ball Bearing

2019 ◽  
Vol 87 (2) ◽  
Author(s):  
Zhiyong Zhang ◽  
Xiaoting Rui ◽  
Rui Yang ◽  
Yushu Chen

Abstract Varying compliance (VC) is an inevitable parametrical excitation to rolling bearing systems due to time-varying stiffness from rolling element revolution. Period-doubling instability in the VC primary resonances of ball bearing is presented in many studies. Recently, this instability was demonstrated to be a probable indicator of occurrence of strong one to two internal resonances and chaotic motions, which has potential effects on the stability and safety of the bearing-rotor system. However, few studies have directly attempted to suppress this bifurcation instability. Here, a dynamic stiffness evaluating method is presented for assessing the threshold of the period-doubling and complex motions in VC primary resonances of ball bearings, where the elaborate evolution of the bifurcating process is obtained by harmonic balance and alternating frequency/time domain (HB-AFT) method and using Floquet theory. Our analysis indicates that by introducing certain additional stiffness, the period-doubling and corresponding subharmonic internal resonances can be suppressed. Besides, the evolution and mechanism of type I intermittency chaos in ball bearings will be clarified in depth. It is also shown that extensive chaotic motions for large bearing clearances (e.g., 40 μm) can vanish perfectly by action of additional stiffness.

Author(s):  
Zhiyong Zhang ◽  
Xiaoting Rui ◽  
Yushu Chen ◽  
Wenkai Dong ◽  
Lei Li

Ball bearings are essential parts of mechanical systems to support the rotors or constitute the revolute joints. The time-varying compliance (VC), bearing clearance and the Hertzian contact between the rolling elements and raceways are three fundamental nonlinear factors in a ball bearing, hence the ball bearing can be considered as a nonlinear system. The hysteresis and jumps induced by the nonlinearities of rolling bearings are typical phenomena of nonlinear vibrations in the rolling bearing-rotor systems. And the corresponding hysteretic impacts have direct effects on the cleavage derivative and fatigue life of the system components. Therefore, the behaviors of hysteresis and jumps are given full attentions and continued studies in the theoretical and engineering fields. Besides, many researchers have done a lot of calculations to depict the various characteristics of bifurcations and chaos in the rolling bearings and their rotor systems, but few researches have been addressed on the inherent mechanism of the typical intermittency vibrations in rolling bearings. With the aid of the HB-AFT (the harmonic balance method and the alternating frequency/time domain technique) method and Floquet theory, this paper will investigate deeply the resonant hysteresis and intermittency chaos in ball bearings.


2013 ◽  
Vol 588 ◽  
pp. 257-265 ◽  
Author(s):  
Robert Kostek

This article presents a non-linear model of deep groove ball bearing and results of simulation. Vibrations of this bearing are studied for a wide range of clearance. An evolution from periodic to chaotic vibrations is visible due to increase of clearance. A number of phenomena associated with non-linear dynamics are observed, for instance: bistability, chaotic vibrations, windows of periodical vibrations, jump of amplitude, period-doubling cascade leading to chaos, bifurcation directly leading to chaos, and self-similarity of a Poincaré section. Moreover, amplitudes of vibrations are presented as functions of clearance. This provides an opportunity to select failure modes. Unfortunately, relations clearance amplitude and amplitude - clearance are ambiguous.


2020 ◽  
Vol 10 (21) ◽  
pp. 7849
Author(s):  
Zhiyong Zhang ◽  
Thomas Sattel ◽  
Yujie Zhu ◽  
Xuan Li ◽  
Yawei Dong ◽  
...  

Varying compliance (VC) is an unavoidable form of parametric excitation in rolling bearings and can affect the stability and safety of the bearing and its supporting rotor system. To date, we have investigated VC primary resonance in ball bearings, and in this paper other parametric VC resonance types are addressed. For a classical ball bearing model with Hertzian contact and clearance nonlinearities between the rolling elements and raceway, the harmonic balance and alternating frequency/time domain (HB–AFT) method and Floquet theory are adopted to analyze the VC parametric resonances and their stabilities. It is found that the 1/2-order subharmonic resonances, 2-order superharmonic resonances, and various VC combination resonances, such as the 1-order and 2-order summed types, can be excited, thus resulting in period-1, period-2, period-4, period-8, period-35, quasi-period, and even chaotic VC motions in the system. Furthermore, the bifurcation and hysteresis characteristics of complex VC resonant responses are discussed, in which cyclic fold, period doubling, and the second Hopf bifurcation can occur. Finally, the global involution of VC resonances around bearing clearance-free operations (i.e., adjusting the bearing clearance to zero or one with low interference) are provided. The overall results extend the investigation of VC parametric resonance cases in rolling bearings.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rui Yang ◽  
Lei Hou ◽  
Yulin Jin ◽  
Yushu Chen ◽  
Zhiyong Zhang

The varying compliance (VC) vibration directly reflects the oscillation intensity of a rolling bearing, and it can be fully revealed in the VC resonance. Moreover, we define the bearing vibration intensity as the bearing vibration information in this paper. Besides the rolling element number of the bearing, the rotor eccentricity is also an inevitable influencing factor for the VC vibration. This paper focuses on the VC resonance characteristics in a ball bearing rotor system. An analytical model is established, and the vibration responses of the system are calculated in a large speed range with the consideration of different ball numbers and different rotor eccentricities. The theoretical results show that the VC vibration is clearer in low-speed range where the VC resonance exist, while it is suppressed in high-speed range. In general, the intensity of the VC resonance decreases with the increase of ball numbers and is not sensible to the rotor eccentricities in low-speed range. Finally, a ball bearing rotor experiment system is setup, the VC resonance is clearly detected, and the high-quality bearing vibration information is obtained. The experimental results qualitatively agree with the theoretical results.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2017 ◽  
Vol 866 ◽  
pp. 375-378
Author(s):  
Sathitbunanan Sumate ◽  
Wirote Ritthong

The ball bearings are the rotating components which are widely spread to moving parts for all machinery operation in general industry. This paper presents the ball bearing resistance tool which has a proper size and can handle the maximum load of 300 kg by using an electric power. The ball bearing resistance tool was used to test the bearings No. 6011 cm. The series of tests was performed in the ball bearings lubricated; engine oil SAE 10W/40, auto transmission fluid Dexron, and hydraulic oil. The rotational speeds for testing were vary; 500, 600 and 700 rpm respectively. At each speed, there were various weight; 50, 70, 90,110,130,150, and 170 kg respectively. The results show that the hydraulic oil generated the smallest coefficients of friction and energy efficiency for ball bearing operation.


1976 ◽  
Vol 98 (3) ◽  
pp. 463-469 ◽  
Author(s):  
C. R. Gentle ◽  
R. J. Boness

This paper describes the development of a computer program used to analyze completely the motion of a ball in a high-speed, thrust-loaded ball bearing. Particular emphasis is paid to the role of the lubricant in governing the forces and moments acting on each ball. Expressions for these forces due to the rolling and sliding of the ball are derived in the light of the latest fluid models, and estimates are also made of the cage forces applicable in this specific situation. It is found that only when lubricant viscoelastic behavior is considered do the theoretical predictions agree with existing experimental evidence.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shengye Lin ◽  
Shuyun Jiang

This paper studies the stiffness characteristics of preloaded duplex angular contact ball bearings. First, a five degrees-of-freedom (5DOF) quasi-static model of the preloaded duplex angular contact ball bearing is established based on the Jones bearing model. Three bearing configurations (face-to-face, back-to-back, and tandem arrangements) and two preload mechanisms (constant pressure preload and fixed position preload) are included in the proposed model. Subsequently, the five-dimensional stiffness matrix of the preloaded duplex angular contact ball bearing is derived analytically. Then, an experimental setup is developed to measure the radial stiffness and the angular stiffness of duplex angular contact ball bearings. The simulated results match well with those from experiments, which prove the validity of the proposed model. Finally, the effects of bearing configuration, preload mechanism, and unloaded contact angle on the angular stiffness and the cross-coupling are studied systematically.


Author(s):  
Michael Flouros

Trends in aircraft engine design cause increased mechanical stress requirements for rolling bearings. Consequently high amounts of heat are rejected which results in high oil scavenge temperatures. The direction of oil flow in the bearing can considerably affect the heat transported by the oil. An RB199 turbofan bearing and its associated chamber were modified to carry out the survey. The test bearing was a 124mm PCD ball bearing. The bearing has a split inner-ring employing under-race lubrication by two individual jets. The total oil flow could be devided to any ratio through the jets. This had an impact on the oil scavenge temperatures and the scavenge flows on both sides of the bearing. Significant reduction in the ‘heat to oil’ was achieved when oil was fed at certain proportions (ratio). This work is part of the European Research programme Brite Euram ATOS (Advanced Transmission and Oil Systems).


2018 ◽  
Vol 5 (4) ◽  
pp. 427-434 ◽  
Author(s):  
M.Y. Toumi ◽  
S. Murer ◽  
F. Bogard ◽  
F. Bolaers

Abstract Bearings are essential elements in the design of rotating machines. In an industrial context, bearing failure can have costly consequences. This paper presents a study of the rolling contact fatigue damage applied to thrust ball bearings. It consists in building a dynamic three-dimensional numerical model of the cyclic shift of a ball on an indented rolling surface, using finite element analysis (FEA). Assessment of the evolution in size of a surface spall as a function of loading cycles is also performed using FEM coupled with fatigue laws. Results are in good agreement with laboratory tests carried out under the same conditions using a fatigue test cell dedicated to ball bearings. This study may improve knowledge about estimating the lifetime of rolling components after onset of a spall using FEA and accounting for structural damage state. Highlights The experimental apparatus and damaged thrust ball bearing are described. We model a portion of the thrust ball bearing featuring a spherical indent. Numerical results in terms of stress field are compared to analytical results from the literature. A fatigue software is used to assess the evolution of spalling size. Good agreement is obtained between experimental test campaigns at different loads and FEA results.


Sign in / Sign up

Export Citation Format

Share Document